聚乙烯醇
材料科学
复合材料
粉煤灰
微观结构
纤维
作者
Shizhe Zhang,Shan He,Bahman Ghiassi,K. van Breugel,Guang Ye
标识
DOI:10.1016/j.cemconres.2023.107308
摘要
This paper presents an experimental study on the interface bonding properties of polyvinyl alcohol (PVA) fiber in alkali-activated slag/fly ash (AASF) pastes. Three interface bonding properties (i.e., the chemical bonding energy Gd, the initial frictional bond strength τ0, and slip-hardening behavior) were determined using single-fiber pullout tests. The microstructure and chemical composition of the reaction products in the fiber/matrix interfacial transition zone (ITZ) and the nearby matrix were also characterized to reveal the influence of PVA fiber to its surrounding matrix. It is found that Gd increases primarily with increasing Ca/(Si+Al) ratio of C-(N-)A-S-H gel. Unlike that in cementitious materials, the inclusion of PVA fiber in AASF pastes promotes the formation of a high-Ca C-(N-)A-S-H phase rather than crystalline portlandite near the fiber surface. This study provides useful guidance for tailoring the interface bonding properties of AASF and also the development of high-performance composites such as strain-hardening geopolymer composites.
科研通智能强力驱动
Strongly Powered by AbleSci AI