已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-aspect Graph Contrastive Learning for Review-enhanced Recommendation

计算机科学 人工智能 机器学习 特征学习 推荐系统 图形 判别式 自编码 深度学习 自然语言处理 理论计算机科学
作者
Ke Wang,Yanmin Zhu,Tianzi Zang,Chunyang Wang,Kuan Liu,Peibo Ma
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (2): 1-29 被引量:2
标识
DOI:10.1145/3618106
摘要

Review-based recommender systems explore semantic aspects of users’ preferences by incorporating user-generated reviews into rating-based models. Recent works have demonstrated the potential of review information to improve the recommendation capacity. However, most existing studies rely on optimizing review-based representation learning part, thus failing to explicitly capture the fine-grained semantic aspects, and also ignoring the intrinsic correlation between ratings and reviews. To address these problems, we propose a multi-aspect graph contrastive learning framework, named MAGCL, with three distinctive designs: (i) a multi-aspect representation learning module, which projects semantic relations to different subspaces by decoupling review information, and then obtains high-order decoupled representations in each aspect via graph encoder. (ii) the contrastive learning module performs graph contrastive learning to capture the correlation between rating and review patterns, which utilize unlabeled data to generate self-supervised signals and, in turn, relieve the data sparsity problem of supervision signals. (iii) the multi-task learning module conducts joint training to learn high-order structure-aware yet self-discriminative node representations by combining recommendation task and self-supervised task, which helps alleviate the over-smoothing problem. Extensive experiments are conducted on four real-world review datasets and the results show the superiority of the proposed framework MAGCL compared with several state of the arts. We also provide further analysis on multi-aspect representations and graph contrastive learning to verify the advantage of proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
cnnnnn完成签到 ,获得积分10
4秒前
灵巧的沛山完成签到,获得积分10
4秒前
李悦发布了新的文献求助10
5秒前
桐桐应助果冻橙采纳,获得30
5秒前
6秒前
仰望星空发布了新的文献求助10
8秒前
NexusExplorer应助果冻橙采纳,获得10
9秒前
10秒前
12秒前
汉堡包应助燕绥采纳,获得10
13秒前
江野完成签到 ,获得积分10
15秒前
后陡门爱神完成签到 ,获得积分10
17秒前
18秒前
cjh发布了新的文献求助10
21秒前
梨凉完成签到,获得积分10
21秒前
Akim应助李悦采纳,获得10
22秒前
花深粥完成签到,获得积分10
22秒前
斯文无敌发布了新的文献求助30
24秒前
haocong发布了新的文献求助10
24秒前
CipherSage应助读书的时候采纳,获得10
25秒前
27秒前
B4完成签到 ,获得积分10
28秒前
29秒前
赘婿应助cjh采纳,获得10
31秒前
35秒前
rrrick发布了新的文献求助10
37秒前
愛研究完成签到,获得积分10
37秒前
Hey完成签到 ,获得积分10
38秒前
38秒前
38秒前
吉他独奏手完成签到,获得积分10
38秒前
wxyshare应助lucy采纳,获得10
42秒前
酷波er应助殷子安采纳,获得10
43秒前
Zefinity完成签到,获得积分10
44秒前
果冻橙发布了新的文献求助10
44秒前
乐乐应助天才美少女骚猪采纳,获得10
48秒前
WJane完成签到,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934928
求助须知:如何正确求助?哪些是违规求助? 4202628
关于积分的说明 13058156
捐赠科研通 3977166
什么是DOI,文献DOI怎么找? 2179428
邀请新用户注册赠送积分活动 1195530
关于科研通互助平台的介绍 1106945