Multi-aspect Graph Contrastive Learning for Review-enhanced Recommendation

计算机科学 人工智能 机器学习 特征学习 推荐系统 图形 判别式 自编码 深度学习 自然语言处理 理论计算机科学
作者
Ke Wang,Yanmin Zhu,Tianzi Zang,Chunyang Wang,Kuan Liu,Peibo Ma
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (2): 1-29 被引量:2
标识
DOI:10.1145/3618106
摘要

Review-based recommender systems explore semantic aspects of users’ preferences by incorporating user-generated reviews into rating-based models. Recent works have demonstrated the potential of review information to improve the recommendation capacity. However, most existing studies rely on optimizing review-based representation learning part, thus failing to explicitly capture the fine-grained semantic aspects, and also ignoring the intrinsic correlation between ratings and reviews. To address these problems, we propose a multi-aspect graph contrastive learning framework, named MAGCL, with three distinctive designs: (i) a multi-aspect representation learning module, which projects semantic relations to different subspaces by decoupling review information, and then obtains high-order decoupled representations in each aspect via graph encoder. (ii) the contrastive learning module performs graph contrastive learning to capture the correlation between rating and review patterns, which utilize unlabeled data to generate self-supervised signals and, in turn, relieve the data sparsity problem of supervision signals. (iii) the multi-task learning module conducts joint training to learn high-order structure-aware yet self-discriminative node representations by combining recommendation task and self-supervised task, which helps alleviate the over-smoothing problem. Extensive experiments are conducted on four real-world review datasets and the results show the superiority of the proposed framework MAGCL compared with several state of the arts. We also provide further analysis on multi-aspect representations and graph contrastive learning to verify the advantage of proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
SQ完成签到,获得积分20
1秒前
科研通AI6应助俊秀的寻菱采纳,获得10
1秒前
谷雨下发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
着急的寒梦完成签到,获得积分10
2秒前
2秒前
pyimh发布了新的文献求助10
2秒前
王一完成签到,获得积分20
2秒前
2秒前
3秒前
mm完成签到,获得积分10
3秒前
3秒前
大模型应助sdzk采纳,获得10
3秒前
4秒前
4秒前
研友_RLNdWZ完成签到 ,获得积分10
4秒前
H星科23456发布了新的文献求助30
4秒前
天天快乐应助ttm采纳,获得50
5秒前
科研通AI6应助雷雷雷采纳,获得10
5秒前
5秒前
暖雪儿完成签到,获得积分10
5秒前
桃花侠完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
威武千青发布了新的文献求助10
6秒前
yy发布了新的文献求助10
7秒前
Cure发布了新的文献求助20
7秒前
无极微光应助此晴可待采纳,获得20
7秒前
wzw完成签到,获得积分10
7秒前
丘比特应助分析化学采纳,获得10
7秒前
7秒前
8秒前
明天的我应助笨笨的水之采纳,获得40
8秒前
battle完成签到 ,获得积分10
8秒前
SAF发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603