Multi-aspect Graph Contrastive Learning for Review-enhanced Recommendation

计算机科学 人工智能 机器学习 特征学习 推荐系统 图形 判别式 自编码 深度学习 自然语言处理 理论计算机科学
作者
Ke Wang,Yanmin Zhu,Tianzi Zang,Chunyang Wang,Kuan Liu,Peibo Ma
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (2): 1-29 被引量:2
标识
DOI:10.1145/3618106
摘要

Review-based recommender systems explore semantic aspects of users’ preferences by incorporating user-generated reviews into rating-based models. Recent works have demonstrated the potential of review information to improve the recommendation capacity. However, most existing studies rely on optimizing review-based representation learning part, thus failing to explicitly capture the fine-grained semantic aspects, and also ignoring the intrinsic correlation between ratings and reviews. To address these problems, we propose a multi-aspect graph contrastive learning framework, named MAGCL, with three distinctive designs: (i) a multi-aspect representation learning module, which projects semantic relations to different subspaces by decoupling review information, and then obtains high-order decoupled representations in each aspect via graph encoder. (ii) the contrastive learning module performs graph contrastive learning to capture the correlation between rating and review patterns, which utilize unlabeled data to generate self-supervised signals and, in turn, relieve the data sparsity problem of supervision signals. (iii) the multi-task learning module conducts joint training to learn high-order structure-aware yet self-discriminative node representations by combining recommendation task and self-supervised task, which helps alleviate the over-smoothing problem. Extensive experiments are conducted on four real-world review datasets and the results show the superiority of the proposed framework MAGCL compared with several state of the arts. We also provide further analysis on multi-aspect representations and graph contrastive learning to verify the advantage of proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ing完成签到,获得积分10
刚刚
怡然的扬发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
李健应助Eon采纳,获得10
4秒前
5秒前
小二郎应助度ewf采纳,获得10
5秒前
5秒前
xxx发布了新的文献求助50
5秒前
sun完成签到,获得积分20
7秒前
000发布了新的文献求助10
9秒前
XIEQ发布了新的文献求助10
10秒前
小蘑菇应助aroorrm采纳,获得10
11秒前
11秒前
一坨台台发布了新的文献求助10
11秒前
淡然的山水完成签到,获得积分10
11秒前
香香香发布了新的文献求助10
17秒前
浮游应助dgfhg采纳,获得10
17秒前
19秒前
19秒前
21秒前
22秒前
Andy完成签到,获得积分10
22秒前
23秒前
cyy2339发布了新的文献求助10
25秒前
27秒前
wy发布了新的文献求助30
28秒前
Moweikang完成签到,获得积分10
31秒前
浮游应助粗心的善若采纳,获得10
33秒前
34秒前
一坨台台完成签到,获得积分10
35秒前
lizh187完成签到 ,获得积分10
35秒前
ding应助3333采纳,获得10
37秒前
38秒前
39秒前
苏州小北完成签到,获得积分10
42秒前
MchemG应助孙伟健采纳,获得10
45秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432