Multi-aspect Graph Contrastive Learning for Review-enhanced Recommendation

计算机科学 人工智能 机器学习 特征学习 推荐系统 图形 判别式 自编码 深度学习 自然语言处理 理论计算机科学
作者
Ke Wang,Yanmin Zhu,Tianzi Zang,Chunyang Wang,Kuan Liu,Peibo Ma
出处
期刊:ACM Transactions on Information Systems 卷期号:42 (2): 1-29 被引量:2
标识
DOI:10.1145/3618106
摘要

Review-based recommender systems explore semantic aspects of users’ preferences by incorporating user-generated reviews into rating-based models. Recent works have demonstrated the potential of review information to improve the recommendation capacity. However, most existing studies rely on optimizing review-based representation learning part, thus failing to explicitly capture the fine-grained semantic aspects, and also ignoring the intrinsic correlation between ratings and reviews. To address these problems, we propose a multi-aspect graph contrastive learning framework, named MAGCL, with three distinctive designs: (i) a multi-aspect representation learning module, which projects semantic relations to different subspaces by decoupling review information, and then obtains high-order decoupled representations in each aspect via graph encoder. (ii) the contrastive learning module performs graph contrastive learning to capture the correlation between rating and review patterns, which utilize unlabeled data to generate self-supervised signals and, in turn, relieve the data sparsity problem of supervision signals. (iii) the multi-task learning module conducts joint training to learn high-order structure-aware yet self-discriminative node representations by combining recommendation task and self-supervised task, which helps alleviate the over-smoothing problem. Extensive experiments are conducted on four real-world review datasets and the results show the superiority of the proposed framework MAGCL compared with several state of the arts. We also provide further analysis on multi-aspect representations and graph contrastive learning to verify the advantage of proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单于静柏完成签到,获得积分10
刚刚
校长发布了新的文献求助10
刚刚
1秒前
御觞丶完成签到,获得积分10
1秒前
今后应助zhui采纳,获得10
2秒前
2秒前
SciGPT应助雾蓝采纳,获得10
2秒前
lulu828完成签到,获得积分10
3秒前
3秒前
科研闲人完成签到,获得积分10
4秒前
内向秋寒发布了新的文献求助10
4秒前
4秒前
黑色兔子完成签到 ,获得积分10
4秒前
5秒前
四小时充足睡眠完成签到,获得积分10
6秒前
zhang0403完成签到,获得积分10
6秒前
欢喜的毛豆完成签到 ,获得积分10
7秒前
华仔应助Eddy采纳,获得10
7秒前
小王发布了新的文献求助10
7秒前
通~发布了新的文献求助10
8秒前
MES发布了新的文献求助10
8秒前
赘婿应助jennifercui采纳,获得10
8秒前
8秒前
9秒前
9秒前
Nifeng完成签到,获得积分10
9秒前
爱听歌的依秋完成签到,获得积分10
9秒前
ufuon发布了新的文献求助10
9秒前
追寻的山晴完成签到,获得积分10
10秒前
10秒前
汉堡包应助otaro采纳,获得10
10秒前
思源应助xfxx采纳,获得10
10秒前
10秒前
铁锤xy完成签到,获得积分10
11秒前
12秒前
12秒前
善学以致用应助qinqin采纳,获得10
13秒前
13秒前
想要礼物的艾斯米拉达完成签到,获得积分10
14秒前
内向秋寒完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794