Multi-aspect Graph Contrastive Learning for Review-enhanced Recommendation

计算机科学 人工智能 机器学习 特征学习 推荐系统 图形 判别式 自编码 深度学习 自然语言处理 理论计算机科学
作者
Ke Wang,Yanmin Zhu,Tianzi Zang,Chunyang Wang,Kuan Liu,Peibo Ma
出处
期刊:ACM Transactions on Information Systems 卷期号:42 (2): 1-29 被引量:2
标识
DOI:10.1145/3618106
摘要

Review-based recommender systems explore semantic aspects of users’ preferences by incorporating user-generated reviews into rating-based models. Recent works have demonstrated the potential of review information to improve the recommendation capacity. However, most existing studies rely on optimizing review-based representation learning part, thus failing to explicitly capture the fine-grained semantic aspects, and also ignoring the intrinsic correlation between ratings and reviews. To address these problems, we propose a multi-aspect graph contrastive learning framework, named MAGCL, with three distinctive designs: (i) a multi-aspect representation learning module, which projects semantic relations to different subspaces by decoupling review information, and then obtains high-order decoupled representations in each aspect via graph encoder. (ii) the contrastive learning module performs graph contrastive learning to capture the correlation between rating and review patterns, which utilize unlabeled data to generate self-supervised signals and, in turn, relieve the data sparsity problem of supervision signals. (iii) the multi-task learning module conducts joint training to learn high-order structure-aware yet self-discriminative node representations by combining recommendation task and self-supervised task, which helps alleviate the over-smoothing problem. Extensive experiments are conducted on four real-world review datasets and the results show the superiority of the proposed framework MAGCL compared with several state of the arts. We also provide further analysis on multi-aspect representations and graph contrastive learning to verify the advantage of proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小芙完成签到,获得积分20
2秒前
fr0zen完成签到,获得积分10
2秒前
天天都发疯完成签到,获得积分10
2秒前
3秒前
3秒前
李嘉完成签到,获得积分10
4秒前
火星上的毛豆完成签到,获得积分10
4秒前
KID发布了新的文献求助10
4秒前
6秒前
mengdewen完成签到,获得积分20
6秒前
今后应助NiuNiu4采纳,获得10
7秒前
7秒前
lfg发布了新的文献求助10
9秒前
丸子鱼完成签到 ,获得积分10
10秒前
10秒前
KID完成签到,获得积分10
11秒前
剪刀手完成签到 ,获得积分10
12秒前
张Morningstar完成签到,获得积分10
12秒前
洁净的雪青完成签到,获得积分10
12秒前
13秒前
zho关闭了zho文献求助
13秒前
典雅的尔蓉完成签到,获得积分20
14秒前
orixero应助liu采纳,获得10
14秒前
15秒前
15秒前
科研通AI2S应助庾储采纳,获得10
16秒前
17秒前
豆丁0419完成签到 ,获得积分10
18秒前
橘柚完成签到 ,获得积分10
18秒前
yy发布了新的文献求助10
18秒前
务实冷风完成签到,获得积分20
18秒前
无花果应助张Morningstar采纳,获得10
18秒前
18秒前
18秒前
19秒前
20秒前
muyi完成签到 ,获得积分10
20秒前
巫马炎彬完成签到,获得积分0
20秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Treatise on Geomorphology(2nd Edition - March 1, 2022) 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3070024
求助须知:如何正确求助?哪些是违规求助? 2724039
关于积分的说明 7483616
捐赠科研通 2371113
什么是DOI,文献DOI怎么找? 1257302
科研通“疑难数据库(出版商)”最低求助积分说明 609889
版权声明 596879