Multi-aspect Graph Contrastive Learning for Review-enhanced Recommendation

计算机科学 人工智能 机器学习 特征学习 推荐系统 图形 判别式 自编码 深度学习 自然语言处理 理论计算机科学
作者
Ke Wang,Yanmin Zhu,Tianzi Zang,Chunyang Wang,Kuan Liu,Peibo Ma
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (2): 1-29 被引量:2
标识
DOI:10.1145/3618106
摘要

Review-based recommender systems explore semantic aspects of users’ preferences by incorporating user-generated reviews into rating-based models. Recent works have demonstrated the potential of review information to improve the recommendation capacity. However, most existing studies rely on optimizing review-based representation learning part, thus failing to explicitly capture the fine-grained semantic aspects, and also ignoring the intrinsic correlation between ratings and reviews. To address these problems, we propose a multi-aspect graph contrastive learning framework, named MAGCL, with three distinctive designs: (i) a multi-aspect representation learning module, which projects semantic relations to different subspaces by decoupling review information, and then obtains high-order decoupled representations in each aspect via graph encoder. (ii) the contrastive learning module performs graph contrastive learning to capture the correlation between rating and review patterns, which utilize unlabeled data to generate self-supervised signals and, in turn, relieve the data sparsity problem of supervision signals. (iii) the multi-task learning module conducts joint training to learn high-order structure-aware yet self-discriminative node representations by combining recommendation task and self-supervised task, which helps alleviate the over-smoothing problem. Extensive experiments are conducted on four real-world review datasets and the results show the superiority of the proposed framework MAGCL compared with several state of the arts. We also provide further analysis on multi-aspect representations and graph contrastive learning to verify the advantage of proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
苹果芷雪发布了新的文献求助10
3秒前
丘比特应助苗儿采纳,获得10
3秒前
4秒前
4秒前
5秒前
29完成签到,获得积分10
5秒前
5秒前
nlwsp完成签到 ,获得积分10
6秒前
高贵紫丝发布了新的文献求助10
7秒前
科研通AI6应助不会取名啊采纳,获得10
7秒前
8秒前
yxy发布了新的文献求助10
8秒前
小瓶子发布了新的文献求助10
9秒前
自信的秋灵完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
Jasper应助阿克采纳,获得20
11秒前
11秒前
洛杉矶滴克里斯完成签到,获得积分10
12秒前
机智的锦程完成签到 ,获得积分10
12秒前
热舞特完成签到,获得积分10
12秒前
ding应助义气的羽毛采纳,获得20
12秒前
Ava应助夏末采纳,获得10
13秒前
13秒前
Jasper应助幸福的自中采纳,获得10
13秒前
小白发布了新的文献求助10
13秒前
13秒前
好多分发布了新的文献求助10
14秒前
14秒前
无极微光应助承蒙大爱采纳,获得20
15秒前
15秒前
16秒前
cdx完成签到,获得积分10
16秒前
李健应助chenxi3099采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618454
求助须知:如何正确求助?哪些是违规求助? 4703358
关于积分的说明 14922268
捐赠科研通 4757546
什么是DOI,文献DOI怎么找? 2550099
邀请新用户注册赠送积分活动 1512920
关于科研通互助平台的介绍 1474299