Generative Artificial Intelligence for Chest Radiograph Interpretation in the Emergency Department

远程放射学 急诊科 医学 胸片 利克特量表 放射科 逻辑回归 回顾性队列研究 射线照相术 内科学 医疗保健 心理学 远程医疗 发展心理学 精神科 经济 经济增长
作者
Jonathan Huang,Luke A Neill,Matthew T. Wittbrodt,David Melnick,Matthew Klug,Michael P. Thompson,John Bailitz,Timothy M. Loftus,Sanjeev Malik,Amit Phull,Victoria Weston,J. Alex Heller,Mozziyar Etemadi
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (10): e2336100-e2336100 被引量:44
标识
DOI:10.1001/jamanetworkopen.2023.36100
摘要

Multimodal generative artificial intelligence (AI) methodologies have the potential to optimize emergency department care by producing draft radiology reports from input images.To evaluate the accuracy and quality of AI-generated chest radiograph interpretations in the emergency department setting.This was a retrospective diagnostic study of 500 randomly sampled emergency department encounters at a tertiary care institution including chest radiographs interpreted by both a teleradiology service and on-site attending radiologist from January 2022 to January 2023. An AI interpretation was generated for each radiograph. The 3 radiograph interpretations were each rated in duplicate by 6 emergency department physicians using a 5-point Likert scale.The primary outcome was any difference in Likert scores between radiologist, AI, and teleradiology reports, using a cumulative link mixed model. Secondary analyses compared the probability of each report type containing no clinically significant discrepancy with further stratification by finding presence, using a logistic mixed-effects model. Physician comments on discrepancies were recorded.A total of 500 ED studies were included from 500 unique patients with a mean (SD) age of 53.3 (21.6) years; 282 patients (56.4%) were female. There was a significant association of report type with ratings, with post hoc tests revealing significantly greater scores for AI (mean [SE] score, 3.22 [0.34]; P < .001) and radiologist (mean [SE] score, 3.34 [0.34]; P < .001) reports compared with teleradiology (mean [SE] score, 2.74 [0.34]) reports. AI and radiologist reports were not significantly different. On secondary analysis, there was no difference in the probability of no clinically significant discrepancy between the 3 report types. Further stratification of reports by presence of cardiomegaly, pulmonary edema, pleural effusion, infiltrate, pneumothorax, and support devices also yielded no difference in the probability of containing no clinically significant discrepancy between the report types.In a representative sample of emergency department chest radiographs, results suggest that the generative AI model produced reports of similar clinical accuracy and textual quality to radiologist reports while providing higher textual quality than teleradiologist reports. Implementation of the model in the clinical workflow could enable timely alerts to life-threatening pathology while aiding imaging interpretation and documentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可耐的寒松完成签到,获得积分10
刚刚
咸蛋黄蘸酱完成签到,获得积分10
1秒前
馆长举报l_liu求助涉嫌违规
1秒前
1秒前
开心向真完成签到,获得积分10
1秒前
Tianling完成签到,获得积分0
1秒前
刘丰丰完成签到 ,获得积分10
3秒前
多喝水完成签到,获得积分10
3秒前
cai完成签到 ,获得积分10
3秒前
一三二五七完成签到 ,获得积分0
4秒前
5秒前
大壳发布了新的文献求助10
5秒前
越幸运完成签到 ,获得积分10
5秒前
东东完成签到 ,获得积分10
6秒前
聪慧板凳完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助50
6秒前
8秒前
廉洁发布了新的文献求助10
9秒前
冬日毛衣完成签到 ,获得积分10
9秒前
zwhuaixu22完成签到 ,获得积分10
10秒前
渡劫完成签到,获得积分10
10秒前
11秒前
平淡的翅膀完成签到 ,获得积分10
12秒前
南枝焙雪完成签到 ,获得积分10
13秒前
Star完成签到 ,获得积分10
13秒前
银海里的玫瑰_完成签到 ,获得积分10
13秒前
碧蓝雨安完成签到,获得积分10
14秒前
平淡的雁开应助菜鸟采纳,获得10
14秒前
邓娅琴完成签到 ,获得积分10
16秒前
廉洁完成签到,获得积分10
16秒前
王大雪完成签到 ,获得积分10
17秒前
17秒前
17秒前
老仙翁完成签到,获得积分10
17秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
WJH完成签到 ,获得积分10
20秒前
qiqi完成签到,获得积分10
22秒前
倪好完成签到,获得积分10
24秒前
ZHANG完成签到 ,获得积分20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597737
求助须知:如何正确求助?哪些是违规求助? 4009200
关于积分的说明 12410079
捐赠科研通 3688475
什么是DOI,文献DOI怎么找? 2033210
邀请新用户注册赠送积分活动 1066477
科研通“疑难数据库(出版商)”最低求助积分说明 951683