Generative Artificial Intelligence for Chest Radiograph Interpretation in the Emergency Department

远程放射学 急诊科 医学 胸片 利克特量表 放射科 逻辑回归 回顾性队列研究 射线照相术 内科学 医疗保健 心理学 远程医疗 发展心理学 精神科 经济 经济增长
作者
Jonathan Huang,Luke A Neill,Matthew T. Wittbrodt,David Melnick,Matthew Klug,Michael P. Thompson,John Bailitz,Timothy M. Loftus,Sanjeev Malik,Amit Phull,Victoria Weston,J. Alex Heller,Mozziyar Etemadi
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (10): e2336100-e2336100 被引量:31
标识
DOI:10.1001/jamanetworkopen.2023.36100
摘要

Multimodal generative artificial intelligence (AI) methodologies have the potential to optimize emergency department care by producing draft radiology reports from input images.To evaluate the accuracy and quality of AI-generated chest radiograph interpretations in the emergency department setting.This was a retrospective diagnostic study of 500 randomly sampled emergency department encounters at a tertiary care institution including chest radiographs interpreted by both a teleradiology service and on-site attending radiologist from January 2022 to January 2023. An AI interpretation was generated for each radiograph. The 3 radiograph interpretations were each rated in duplicate by 6 emergency department physicians using a 5-point Likert scale.The primary outcome was any difference in Likert scores between radiologist, AI, and teleradiology reports, using a cumulative link mixed model. Secondary analyses compared the probability of each report type containing no clinically significant discrepancy with further stratification by finding presence, using a logistic mixed-effects model. Physician comments on discrepancies were recorded.A total of 500 ED studies were included from 500 unique patients with a mean (SD) age of 53.3 (21.6) years; 282 patients (56.4%) were female. There was a significant association of report type with ratings, with post hoc tests revealing significantly greater scores for AI (mean [SE] score, 3.22 [0.34]; P < .001) and radiologist (mean [SE] score, 3.34 [0.34]; P < .001) reports compared with teleradiology (mean [SE] score, 2.74 [0.34]) reports. AI and radiologist reports were not significantly different. On secondary analysis, there was no difference in the probability of no clinically significant discrepancy between the 3 report types. Further stratification of reports by presence of cardiomegaly, pulmonary edema, pleural effusion, infiltrate, pneumothorax, and support devices also yielded no difference in the probability of containing no clinically significant discrepancy between the report types.In a representative sample of emergency department chest radiographs, results suggest that the generative AI model produced reports of similar clinical accuracy and textual quality to radiologist reports while providing higher textual quality than teleradiologist reports. Implementation of the model in the clinical workflow could enable timely alerts to life-threatening pathology while aiding imaging interpretation and documentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助研一小刘采纳,获得10
刚刚
刚刚
水萝卜完成签到 ,获得积分10
1秒前
1秒前
高高完成签到,获得积分10
2秒前
甜甜晓露发布了新的文献求助10
2秒前
ChiDaiOLD发布了新的文献求助10
3秒前
4秒前
szl完成签到,获得积分10
4秒前
5秒前
orixero应助跳跃的静曼采纳,获得10
5秒前
诺奖离我十万八千里完成签到,获得积分10
5秒前
高高发布了新的文献求助10
5秒前
9秒前
深情安青应助机智的青槐采纳,获得10
9秒前
茶茶发布了新的文献求助10
9秒前
szl发布了新的文献求助10
9秒前
Lucas应助京阿尼采纳,获得10
10秒前
甜甜晓露完成签到,获得积分10
11秒前
科研通AI5应助qifa采纳,获得10
11秒前
shrike完成签到 ,获得积分10
11秒前
有魅力白开水完成签到,获得积分20
11秒前
小蒲完成签到 ,获得积分10
12秒前
万能图书馆应助大力鱼采纳,获得10
12秒前
13秒前
Rrr发布了新的文献求助10
14秒前
跳跃的静曼完成签到,获得积分10
14秒前
丰富的不惜完成签到,获得积分10
15秒前
16秒前
wfc完成签到,获得积分10
16秒前
浅梨涡完成签到 ,获得积分10
18秒前
JamesPei应助椰子熟了耶采纳,获得20
19秒前
hanyang965发布了新的文献求助10
19秒前
orixero应助喵呜采纳,获得10
19秒前
19秒前
19秒前
20秒前
en发布了新的文献求助10
20秒前
21秒前
白宝宝北北白应助氕氘氚采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808