Generative Artificial Intelligence for Chest Radiograph Interpretation in the Emergency Department

远程放射学 急诊科 医学 胸片 利克特量表 放射科 逻辑回归 回顾性队列研究 射线照相术 内科学 医疗保健 心理学 远程医疗 精神科 发展心理学 经济 经济增长
作者
Jonathan Huang,Luke A Neill,Matthew T. Wittbrodt,David Melnick,Matthew Klug,Michael P. Thompson,John Bailitz,Timothy M. Loftus,Sanjeev Malik,Amit Phull,Victoria Weston,J. Alex Heller,Mozziyar Etemadi
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (10): e2336100-e2336100 被引量:62
标识
DOI:10.1001/jamanetworkopen.2023.36100
摘要

Multimodal generative artificial intelligence (AI) methodologies have the potential to optimize emergency department care by producing draft radiology reports from input images.To evaluate the accuracy and quality of AI-generated chest radiograph interpretations in the emergency department setting.This was a retrospective diagnostic study of 500 randomly sampled emergency department encounters at a tertiary care institution including chest radiographs interpreted by both a teleradiology service and on-site attending radiologist from January 2022 to January 2023. An AI interpretation was generated for each radiograph. The 3 radiograph interpretations were each rated in duplicate by 6 emergency department physicians using a 5-point Likert scale.The primary outcome was any difference in Likert scores between radiologist, AI, and teleradiology reports, using a cumulative link mixed model. Secondary analyses compared the probability of each report type containing no clinically significant discrepancy with further stratification by finding presence, using a logistic mixed-effects model. Physician comments on discrepancies were recorded.A total of 500 ED studies were included from 500 unique patients with a mean (SD) age of 53.3 (21.6) years; 282 patients (56.4%) were female. There was a significant association of report type with ratings, with post hoc tests revealing significantly greater scores for AI (mean [SE] score, 3.22 [0.34]; P < .001) and radiologist (mean [SE] score, 3.34 [0.34]; P < .001) reports compared with teleradiology (mean [SE] score, 2.74 [0.34]) reports. AI and radiologist reports were not significantly different. On secondary analysis, there was no difference in the probability of no clinically significant discrepancy between the 3 report types. Further stratification of reports by presence of cardiomegaly, pulmonary edema, pleural effusion, infiltrate, pneumothorax, and support devices also yielded no difference in the probability of containing no clinically significant discrepancy between the report types.In a representative sample of emergency department chest radiographs, results suggest that the generative AI model produced reports of similar clinical accuracy and textual quality to radiologist reports while providing higher textual quality than teleradiologist reports. Implementation of the model in the clinical workflow could enable timely alerts to life-threatening pathology while aiding imaging interpretation and documentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助圆脸的空间啊采纳,获得10
4秒前
CGFHEMAN完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
稚祎完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
25秒前
我不是哪吒完成签到 ,获得积分10
28秒前
w0r1d完成签到 ,获得积分10
31秒前
37秒前
无限晓蓝完成签到 ,获得积分10
38秒前
王佳亮完成签到,获得积分10
42秒前
三百一十四完成签到 ,获得积分10
45秒前
HUAIMI完成签到 ,获得积分10
46秒前
49秒前
顽固的肉完成签到,获得积分10
51秒前
MchemG应助殷楷霖采纳,获得10
53秒前
妞妞完成签到 ,获得积分10
54秒前
XxxxxxENT发布了新的文献求助10
54秒前
天玄完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
56秒前
lxxxx完成签到 ,获得积分10
1分钟前
XxxxxxENT完成签到,获得积分10
1分钟前
绿色之梦完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
不会学习的小郭完成签到 ,获得积分10
1分钟前
xiaodong完成签到,获得积分10
1分钟前
甜甜信封完成签到,获得积分10
1分钟前
1分钟前
烨枫晨曦完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
鱼鱼完成签到 ,获得积分10
1分钟前
houxy完成签到 ,获得积分10
1分钟前
archiz发布了新的文献求助10
1分钟前
kelien1205完成签到 ,获得积分10
1分钟前
1分钟前
wintersss完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
蛋妮完成签到 ,获得积分10
1分钟前
稳重的秋天完成签到,获得积分10
1分钟前
viogriffin完成签到,获得积分0
1分钟前
luluzhu发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645043
求助须知:如何正确求助?哪些是违规求助? 4767578
关于积分的说明 15026217
捐赠科研通 4803454
什么是DOI,文献DOI怎么找? 2568317
邀请新用户注册赠送积分活动 1525684
关于科研通互助平台的介绍 1485247