Generative Artificial Intelligence for Chest Radiograph Interpretation in the Emergency Department

远程放射学 急诊科 医学 胸片 利克特量表 放射科 逻辑回归 回顾性队列研究 射线照相术 内科学 医疗保健 心理学 远程医疗 精神科 发展心理学 经济 经济增长
作者
Jonathan Huang,Luke A Neill,Matthew T. Wittbrodt,David Melnick,Matthew Klug,Michael P. Thompson,John Bailitz,Timothy M. Loftus,Sanjeev Malik,Amit Phull,Victoria Weston,J. Alex Heller,Mozziyar Etemadi
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (10): e2336100-e2336100 被引量:62
标识
DOI:10.1001/jamanetworkopen.2023.36100
摘要

Multimodal generative artificial intelligence (AI) methodologies have the potential to optimize emergency department care by producing draft radiology reports from input images.To evaluate the accuracy and quality of AI-generated chest radiograph interpretations in the emergency department setting.This was a retrospective diagnostic study of 500 randomly sampled emergency department encounters at a tertiary care institution including chest radiographs interpreted by both a teleradiology service and on-site attending radiologist from January 2022 to January 2023. An AI interpretation was generated for each radiograph. The 3 radiograph interpretations were each rated in duplicate by 6 emergency department physicians using a 5-point Likert scale.The primary outcome was any difference in Likert scores between radiologist, AI, and teleradiology reports, using a cumulative link mixed model. Secondary analyses compared the probability of each report type containing no clinically significant discrepancy with further stratification by finding presence, using a logistic mixed-effects model. Physician comments on discrepancies were recorded.A total of 500 ED studies were included from 500 unique patients with a mean (SD) age of 53.3 (21.6) years; 282 patients (56.4%) were female. There was a significant association of report type with ratings, with post hoc tests revealing significantly greater scores for AI (mean [SE] score, 3.22 [0.34]; P < .001) and radiologist (mean [SE] score, 3.34 [0.34]; P < .001) reports compared with teleradiology (mean [SE] score, 2.74 [0.34]) reports. AI and radiologist reports were not significantly different. On secondary analysis, there was no difference in the probability of no clinically significant discrepancy between the 3 report types. Further stratification of reports by presence of cardiomegaly, pulmonary edema, pleural effusion, infiltrate, pneumothorax, and support devices also yielded no difference in the probability of containing no clinically significant discrepancy between the report types.In a representative sample of emergency department chest radiographs, results suggest that the generative AI model produced reports of similar clinical accuracy and textual quality to radiologist reports while providing higher textual quality than teleradiologist reports. Implementation of the model in the clinical workflow could enable timely alerts to life-threatening pathology while aiding imaging interpretation and documentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
土豆炖牛腩完成签到,获得积分20
刚刚
九歌发布了新的文献求助10
1秒前
1秒前
ss发布了新的文献求助10
1秒前
YDX发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
FashionBoy应助夏夏采纳,获得10
1秒前
卯一发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
科研通AI6应助侯康采纳,获得10
3秒前
CC完成签到 ,获得积分10
4秒前
在下小李发布了新的文献求助10
4秒前
科研通AI6应助奔奔采纳,获得10
4秒前
00关注了科研通微信公众号
4秒前
Georges-09发布了新的文献求助10
5秒前
5秒前
情怀应助萧一采纳,获得10
5秒前
汉堡包应助My采纳,获得30
5秒前
Hello应助lf采纳,获得10
6秒前
6秒前
没有昵称发布了新的文献求助10
6秒前
海棠花完成签到,获得积分10
6秒前
歪比巴卜发布了新的文献求助20
6秒前
nihao发布了新的文献求助10
6秒前
大模型应助wuwuwu采纳,获得30
7秒前
Jeffery426完成签到,获得积分10
7秒前
7秒前
所所应助tianmafei采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
saby完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827