电阻随机存取存储器
光电子学
电阻式触摸屏
开尔文探针力显微镜
量子点
记忆电阻器
氧化锡
材料科学
纳米技术
电压
电气工程
兴奋剂
物理
原子力显微镜
工程类
电极
量子力学
作者
Wenxiao Wang,Iffat Anzum,Yang Li,Wenjing Yue,Song Gao,Chunwei Zhang,Eun‐Seong Kim,Nam‐Young Kim
标识
DOI:10.1109/ted.2023.3318519
摘要
Multilevel resistive random access memory (RRAM) yields an effective pathway for improving the storage density in the era of big data. However, emerging applications requiring highly controllable and reliable multilevel RRAMs remain an unsolved challenge. Herein, a highly controllable multilevel Al/polymethyl methacrylate/WS2-quantum dots (QDs)/polymethyl methacrylate/fluorine-doped tin oxide-structured (WS2 QDs-based device) RRAM is proposed, synthesized via a facile spin-coating process. The proposed device exhibits bipolar resistive switching behavior with an ON/OFF ratio of $10^{{3}}$ , stable endurance and retention, and its resistive switching properties are highly dependent on the WS2 QDs concentration. According to the results of Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (C-AFM), the resistive switching mechanism is attributed to the formation/rupture of conductive filaments caused by carrier trapping and de-trapping. Moreover, by varying the top electrode areas, the resistive switching behaviors and the resistance states of the device are effectively regulated. The multilevel performance is scrutinized systematically by tuning the compliance currents and stop voltage to the device. Under different compliance currents, there are three low resistance states (LRSs) and one high resistance state (HRS), and three HRSs and one LRS under different stop voltages. Notably, this study proposes a strategy for fabricating a highly controllable multilevel RRAM, facilitating the development of high-density polymer-based storage media.
科研通智能强力驱动
Strongly Powered by AbleSci AI