已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

3D hot laser shock peening without coating based on Leidenfrost effect enables self-armored hydrophobic surface with enhanced fatigue properties

材料科学 复合材料 涂层 喷丸 润湿 激光器 雷登弗罗斯特效应 汽化 残余应力 光学 传热 机械 物理 传热系数 核沸腾 热力学
作者
Xiaohan Zhang,Jian Liu,Yijun Hu
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:177: 107932-107932 被引量:1
标识
DOI:10.1016/j.ijfatigue.2023.107932
摘要

Hydrophobic metal surfaces have widespread applications in self-cleaning, ice removal, corrosion resistance, and drag reduction. The fine structure of these surfaces is crucial for their hydrophobic properties. Currently, pulse laser direct surface texturing is commonly employed to create hydrophobic surfaces, but this method primarily operates at room temperature. However, the rapid cooling rate and significant temperature gradient of the thin melted layer generated at room temperature often result in high stress concentration and cracks within the fine structure, compromising the overall integrity of the hydrophobic surface when subjected to complex external loads. To assess structural robustness by evaluating crack propagation, fatigue performance serves as a vital indicator. The thermal effect helps mitigate thermal cracking caused by direct laser irradiation and introduces an additional strengthening mechanism through dynamic strain aging. By utilizing the Leidenfrost effect, water can act as a confinement layer to achieve high temperature laser shock, which is expected to enhance the fatigue performance of hydrophobic structures. In this study, we propose a technique called 3D hot laser shock peening without coating (3HLSPwoC) as a cost-effective and efficient method to fabricate multi-scale self-armored hydrophobic surfaces with enhanced fatigue properties. We systematically discuss and analyze the wettability and mechanical properties of samples manufactured using different approaches. Furthermore, we reveal the underlying mechanism responsible for the fatigue performance improvement achieved through the 3HLSPwoC process, supported by molecular dynamics calculations and finite element simulations. Compared with the samples manufactured at room temperature, the surface of 3HLSPwoC samples exhibit greater plastic deformation, with no visible cracks on the surface. Additionally, these samples possess higher compressive residual stress and hardness. Notably, 3HLSPwoC samples demonstrate superior fatigue performance and enhanced durability of the hydrophobic properties. 3HLSPwoC has proved to be a novel process for manufacturing advanced hydrophobic surfaces with comprehensive mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
十七应助zy采纳,获得10
3秒前
3秒前
ocean发布了新的文献求助10
3秒前
5秒前
lixin发布了新的文献求助10
7秒前
8秒前
忧虑的羊发布了新的文献求助10
9秒前
DZ发布了新的文献求助10
10秒前
小二郎应助科研修勾采纳,获得10
10秒前
pcr163应助RyanNeo采纳,获得100
15秒前
急急吉吉完成签到,获得积分10
16秒前
xf2285发布了新的文献求助10
16秒前
自信的秀发应助景觅波采纳,获得10
16秒前
深情安青应助阮hyyy采纳,获得10
17秒前
科研通AI2S应助DZ采纳,获得10
17秒前
17秒前
18秒前
研友_Z6QYbn完成签到,获得积分10
19秒前
21秒前
科研修勾发布了新的文献求助10
22秒前
两个轮完成签到 ,获得积分10
24秒前
小草发布了新的文献求助10
24秒前
阮hyyy完成签到,获得积分10
25秒前
28秒前
31秒前
32秒前
爆米花应助11111采纳,获得10
34秒前
34秒前
34秒前
35秒前
木香发布了新的文献求助10
35秒前
xxb完成签到,获得积分10
36秒前
爆米花应助心灵美的冰枫采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
充电宝应助科研通管家采纳,获得10
37秒前
小蘑菇应助科研通管家采纳,获得10
37秒前
37秒前
JL发布了新的文献求助10
40秒前
jing32yi发布了新的文献求助10
40秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388192
求助须知:如何正确求助?哪些是违规求助? 3000666
关于积分的说明 8792651
捐赠科研通 2686696
什么是DOI,文献DOI怎么找? 1471749
科研通“疑难数据库(出版商)”最低求助积分说明 680532
邀请新用户注册赠送积分活动 673252