Predicting minty compounds binary mixtures’ pleasantness by odor intensity in aqueous solutions

气味 风味 芳香 强度(物理) 二进制数 化学 心理学 感知 感官分析 食品科学 认知心理学 数学 有机化学 算术 物理 量子力学 神经科学
作者
Huanzhe Du,Hongbing Lu,Suxing Tuo,Yanchun Li,Kejun Zhong,Yuxuan Kang,Guangyong Zhu,Genfa Yu,Fengping Yi,Bo Kong
出处
期刊:Journal of Food Science [Wiley]
卷期号:88 (11): 4693-4704
标识
DOI:10.1111/1750-3841.16738
摘要

Abstract The aroma of mint is well‐liked by the public, and key flavor odorants in mint aroma had been found, but how these molecules interact and form a satisfying odor remains a challenge. Quality, intensity, and pleasantness are our most basic perceptions of aromas; both intensity and pleasantness can be quantified. However, compared to intensity, research on pleasantness was lacking. Pleasantness was one of the most important indicators for formulating a satisfying mint flavor, and the study of binary mixtures was fundamental to our understanding of more complex mixtures. Therefore, the purpose of this study was to explore the characteristics of pleasantness as a function of concentration and, at the same time, to investigate the relationship between intensity and pleasantness in binary mixtures. Thirty sensory evaluation volunteers participated in the evaluation of the intensity and pleasantness of six key flavor odorants of mint and five binary mixtures. The results showed that the pleasantness increased first and then decreased or stabilized with the rising of concentration; even though the interactions in binary mixtures were not the same, their pleasantness could be predicted using the intensities of the components by Response Surface Design of Experiments, and the goodness of fit was greater than 0.92, indicating that the models had the great predictive ability. Practical Application Whether blending flavors or evaluating them, a great deal of experience is required, yet the acquisition of this experience is a long process. Performing these tasks is difficult for the novice, and it helps to quantify the feeling for the flavor and build some mathematical models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sophia发布了新的文献求助20
刚刚
LZY发布了新的文献求助10
刚刚
聪慧的凝海完成签到 ,获得积分10
1秒前
转眼间完成签到,获得积分10
1秒前
小马甲应助幽芊细雨采纳,获得10
5秒前
无花果应助洪汉采纳,获得10
5秒前
liangkai发布了新的文献求助10
9秒前
10秒前
123木头人应助LZY采纳,获得10
11秒前
科研通AI2S应助LZY采纳,获得10
11秒前
科研通AI2S应助LZY采纳,获得10
11秒前
onedowmsk完成签到,获得积分10
11秒前
石中酒完成签到 ,获得积分10
13秒前
athena发布了新的文献求助30
14秒前
美好沛萍完成签到 ,获得积分10
14秒前
14秒前
史超完成签到,获得积分10
16秒前
锦鲤完成签到 ,获得积分10
16秒前
科研通AI2S应助孤梦落雨采纳,获得10
16秒前
Wshtiiiii发布了新的文献求助10
17秒前
yi完成签到 ,获得积分10
18秒前
18秒前
所所应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得20
22秒前
852应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
24秒前
希望天下0贩的0应助宥啊采纳,获得10
24秒前
25秒前
marjorie应助田田采纳,获得10
26秒前
Last炫神丶发布了新的文献求助10
27秒前
SYY完成签到,获得积分10
27秒前
29秒前
快乐藤椒堡完成签到 ,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136060
求助须知:如何正确求助?哪些是违规求助? 2786881
关于积分的说明 7779829
捐赠科研通 2443052
什么是DOI,文献DOI怎么找? 1298859
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870