A deep learning system for detection of early Barrett's neoplasia: a model development and validation study

巴雷特食道 医学 标杆管理 考试(生物学) 发育不良 人工智能 内科学 放射科 胃肠病学 癌症 腺癌 计算机科学 生物 营销 业务 古生物学
作者
Kiki Fockens,M R Jong,J-Wouter Jukema,Tim Boers,Carolus H. J. Kusters,Joost van der Putten,Roos E. Pouw,Lucas C. Duits,Nahid S.M. Montazeri,Sanne N. van Munster,Bas L. Weusten,Lorenza Alvarez Herrero,MHMG Houben,WB Nagengast,Jessie Westerhof,A. Alkhalaf,Rosalie C. Mallant–Hent,Pieter Scholten,Krish Ragunath,Stefan Seewald,Peter Elbe,Francisco Baldaque‐Silva,Maximilien Barret,Jacobo Ortiz Fernández‐Sordo,G Moral Villarejo,Oliver Pech,Torsten Beyna,Fons van der Sommen,Peter H. De With,A. Jeroen de Groof,Jacques Bergman,Alaa Alkhalaf,Lorenza Alvarez Herrero,Francisco Baldaque‐Silva,Maximilien Barret,Jacques Bergman,Torsten Beyna,Raf Bisschops,Tim Boers,Wouter L. Curvers,Pierre H. Deprez,Lucas C. Duits,Peter Elbe,José Miguel Esteban López-Jamar,Gary W. Falk,Kiki Fockens,Eric K. Ganguly,Gregory G. Ginsberg,Albert J. de Groof,Rehan Haidry,Martin Houben,Anthony Infantolino,Prasad G. Iyer,Martijn R. Jong,Pieter-Jan de Jonge,Jelmer B. Jukema,Arjun K Koch,Srinadh Komanduri,Vani J. Konda,Carolus H. J. Kusters,Philippe Leclercq,Cadman L. Leggett,Arnaud Lemmers,Charles J. Lightdale,Rosalie C. Mallant–Hent,Guiomar Moral Villarejo,V. Raman Muthusamy,Wouter B. Nagengast,Jacobo Ortiz Fernández‐Sordo,Oliver Pech,Ian Penman,Douglas K. Pleskow,Roos E. Pouw,Joost van der Putten,Krish Ragunath,Pieter Scholten,Stefan Seewald,Amritha Sethi,Michael S. Smith,Fons van der Sommen,Arvind J. Trindade,Sachin Wani,Irving Waxman,Jessie Westerhof,Bas L. Weusten,Peter H. N. de With,Herbert C. Wolfsen
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (12): e905-e916 被引量:15
标识
DOI:10.1016/s2589-7500(23)00199-1
摘要

BackgroundComputer-aided detection (CADe) systems could assist endoscopists in detecting early neoplasia in Barrett's oesophagus, which could be difficult to detect in endoscopic images. The aim of this study was to develop, test, and benchmark a CADe system for early neoplasia in Barrett's oesophagus.MethodsThe CADe system was first pretrained with ImageNet followed by domain-specific pretraining with GastroNet. We trained the CADe system on a dataset of 14 046 images (2506 patients) of confirmed Barrett's oesophagus neoplasia and non-dysplastic Barrett's oesophagus from 15 centres. Neoplasia was delineated by 14 Barrett's oesophagus experts for all datasets. We tested the performance of the CADe system on two independent test sets. The all-comers test set comprised 327 (73 patients) non-dysplastic Barrett's oesophagus images, 82 (46 patients) neoplastic images, 180 (66 of the same patients) non-dysplastic Barrett's oesophagus videos, and 71 (45 of the same patients) neoplastic videos. The benchmarking test set comprised 100 (50 patients) neoplastic images, 300 (125 patients) non-dysplastic images, 47 (47 of the same patients) neoplastic videos, and 141 (82 of the same patients) non-dysplastic videos, and was enriched with subtle neoplasia cases. The benchmarking test set was evaluated by 112 endoscopists from six countries (first without CADe and, after 6 weeks, with CADe) and by 28 external international Barrett's oesophagus experts. The primary outcome was the sensitivity of Barrett's neoplasia detection by general endoscopists without CADe assistance versus with CADe assistance on the benchmarking test set. We compared sensitivity using a mixed-effects logistic regression model with conditional odds ratios (ORs; likelihood profile 95% CIs).FindingsSensitivity for neoplasia detection among endoscopists increased from 74% to 88% with CADe assistance (OR 2·04; 95% CI 1·73–2·42; p<0·0001 for images and from 67% to 79% [2·35; 1·90–2·94; p<0·0001] for video) without compromising specificity (from 89% to 90% [1·07; 0·96–1·19; p=0·20] for images and from 96% to 94% [0·94; 0·79–1·11; ] for video; p=0·46). In the all-comers test set, CADe detected neoplastic lesions in 95% (88–98) of images and 97% (90–99) of videos. In the benchmarking test set, the CADe system was superior to endoscopists in detecting neoplasia (90% vs 74% [OR 3·75; 95% CI 1·93–8·05; p=0·0002] for images and 91% vs 67% [11·68; 3·85–47·53; p<0·0001] for video) and non-inferior to Barrett's oesophagus experts (90% vs 87% [OR 1·74; 95% CI 0·83–3·65] for images and 91% vs 86% [2·94; 0·99–11·40] for video).InterpretationCADe outperformed endoscopists in detecting Barrett's oesophagus neoplasia and, when used as an assistive tool, it improved their detection rate. CADe detected virtually all neoplasia in a test set of consecutive cases.FundingOlympus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
招财不肥完成签到,获得积分10
刚刚
刚刚
77完成签到,获得积分10
1秒前
NexusExplorer应助顾阿秀采纳,获得10
1秒前
1秒前
科研通AI5应助二二二采纳,获得10
2秒前
terrell完成签到,获得积分10
2秒前
David完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助Denmark采纳,获得10
3秒前
3秒前
望望旺仔牛奶完成签到,获得积分10
3秒前
香蕉觅云应助luoshi采纳,获得10
4秒前
Zn应助gnr2000采纳,获得10
4秒前
二小完成签到,获得积分20
4秒前
拼搏思卉完成签到,获得积分10
4秒前
内向音响发布了新的文献求助10
4秒前
上官若男应助曼尼采纳,获得10
5秒前
飞羽发布了新的文献求助10
5秒前
科研通AI2S应助song99采纳,获得10
5秒前
momi完成签到 ,获得积分10
5秒前
哈哈哈呢完成签到 ,获得积分20
5秒前
LiShin发布了新的文献求助10
5秒前
phylicia发布了新的文献求助10
6秒前
萝卜完成签到,获得积分10
6秒前
6秒前
sjj完成签到,获得积分10
7秒前
只道寻常发布了新的文献求助10
7秒前
灵巧坤完成签到,获得积分20
8秒前
澹台灭明完成签到,获得积分10
8秒前
含蓄的鹤发布了新的文献求助10
8秒前
K. G.完成签到,获得积分0
8秒前
张云雷的大闸蟹完成签到,获得积分20
8秒前
8秒前
9秒前
10秒前
化学狗完成签到,获得积分10
10秒前
yud完成签到 ,获得积分10
10秒前
11秒前
拼搏思卉发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762