亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning system for detection of early Barrett's neoplasia: a model development and validation study

巴雷特食道 医学 标杆管理 考试(生物学) 发育不良 人工智能 内科学 放射科 胃肠病学 癌症 腺癌 计算机科学 生物 业务 古生物学 营销
作者
Kiki Fockens,M R Jong,J-Wouter Jukema,Tim Boers,Carolus H. J. Kusters,Joost van der Putten,Roos E. Pouw,Lucas C. Duits,Nahid S.M. Montazeri,Sanne N. van Munster,Bas L. Weusten,Lorenza Alvarez Herrero,MHMG Houben,WB Nagengast,Jessie Westerhof,A. Alkhalaf,Rosalie C. Mallant–Hent,Pieter Scholten,Krish Ragunath,Stefan Seewald,Peter Elbe,Francisco Baldaque‐Silva,Maximilien Barret,Jacobo Ortiz Fernández‐Sordo,G Moral Villarejo,Oliver Pech,Torsten Beyna,Fons van der Sommen,Peter H. De With,A. Jeroen de Groof,Jacques Bergman,Alaa Alkhalaf,Lorenza Alvarez Herrero,Francisco Baldaque‐Silva,Maximilien Barret,Jacques Bergman,Torsten Beyna,Raf Bisschops,Tim Boers,Wouter L. Curvers,Pierre H. Deprez,Lucas C. Duits,Peter Elbe,José Miguel Esteban López-Jamar,Gary W. Falk,Kiki Fockens,Eric K. Ganguly,Gregory G. Ginsberg,Albert J. de Groof,Rehan Haidry,Martin Houben,Anthony Infantolino,Prasad G. Iyer,Martijn R. Jong,Pieter-Jan de Jonge,Jelmer B. Jukema,Arjun K Koch,Srinadh Komanduri,Vani J. Konda,Carolus H. J. Kusters,Philippe Leclercq,Cadman L. Leggett,Arnaud Lemmers,Charles J. Lightdale,Rosalie C. Mallant–Hent,Guiomar Moral Villarejo,V. Raman Muthusamy,Wouter B. Nagengast,Jacobo Ortiz Fernández‐Sordo,Oliver Pech,Ian Penman,Douglas K. Pleskow,Roos E. Pouw,Joost van der Putten,Krish Ragunath,Pieter Scholten,Stefan Seewald,Amritha Sethi,Michael S. Smith,Fons van der Sommen,Arvind J. Trindade,Sachin Wani,Irving Waxman,Jessie Westerhof,Bas L. Weusten,Peter H. N. de With,Herbert C. Wolfsen
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (12): e905-e916 被引量:15
标识
DOI:10.1016/s2589-7500(23)00199-1
摘要

BackgroundComputer-aided detection (CADe) systems could assist endoscopists in detecting early neoplasia in Barrett's oesophagus, which could be difficult to detect in endoscopic images. The aim of this study was to develop, test, and benchmark a CADe system for early neoplasia in Barrett's oesophagus.MethodsThe CADe system was first pretrained with ImageNet followed by domain-specific pretraining with GastroNet. We trained the CADe system on a dataset of 14 046 images (2506 patients) of confirmed Barrett's oesophagus neoplasia and non-dysplastic Barrett's oesophagus from 15 centres. Neoplasia was delineated by 14 Barrett's oesophagus experts for all datasets. We tested the performance of the CADe system on two independent test sets. The all-comers test set comprised 327 (73 patients) non-dysplastic Barrett's oesophagus images, 82 (46 patients) neoplastic images, 180 (66 of the same patients) non-dysplastic Barrett's oesophagus videos, and 71 (45 of the same patients) neoplastic videos. The benchmarking test set comprised 100 (50 patients) neoplastic images, 300 (125 patients) non-dysplastic images, 47 (47 of the same patients) neoplastic videos, and 141 (82 of the same patients) non-dysplastic videos, and was enriched with subtle neoplasia cases. The benchmarking test set was evaluated by 112 endoscopists from six countries (first without CADe and, after 6 weeks, with CADe) and by 28 external international Barrett's oesophagus experts. The primary outcome was the sensitivity of Barrett's neoplasia detection by general endoscopists without CADe assistance versus with CADe assistance on the benchmarking test set. We compared sensitivity using a mixed-effects logistic regression model with conditional odds ratios (ORs; likelihood profile 95% CIs).FindingsSensitivity for neoplasia detection among endoscopists increased from 74% to 88% with CADe assistance (OR 2·04; 95% CI 1·73–2·42; p<0·0001 for images and from 67% to 79% [2·35; 1·90–2·94; p<0·0001] for video) without compromising specificity (from 89% to 90% [1·07; 0·96–1·19; p=0·20] for images and from 96% to 94% [0·94; 0·79–1·11; ] for video; p=0·46). In the all-comers test set, CADe detected neoplastic lesions in 95% (88–98) of images and 97% (90–99) of videos. In the benchmarking test set, the CADe system was superior to endoscopists in detecting neoplasia (90% vs 74% [OR 3·75; 95% CI 1·93–8·05; p=0·0002] for images and 91% vs 67% [11·68; 3·85–47·53; p<0·0001] for video) and non-inferior to Barrett's oesophagus experts (90% vs 87% [OR 1·74; 95% CI 0·83–3·65] for images and 91% vs 86% [2·94; 0·99–11·40] for video).InterpretationCADe outperformed endoscopists in detecting Barrett's oesophagus neoplasia and, when used as an assistive tool, it improved their detection rate. CADe detected virtually all neoplasia in a test set of consecutive cases.FundingOlympus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
45秒前
plusweng完成签到 ,获得积分10
58秒前
耿宇航完成签到 ,获得积分10
1分钟前
中央完成签到,获得积分10
1分钟前
乐乱完成签到 ,获得积分10
2分钟前
CodeCraft应助XL神放采纳,获得10
2分钟前
xiaozang完成签到 ,获得积分10
3分钟前
所所应助yzr01采纳,获得10
3分钟前
3分钟前
3分钟前
yzr01发布了新的文献求助10
3分钟前
程风破浪发布了新的文献求助10
3分钟前
暗号完成签到 ,获得积分10
3分钟前
充电宝应助程风破浪采纳,获得10
4分钟前
4分钟前
XL神放发布了新的文献求助10
4分钟前
5分钟前
YYYY完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
程风破浪发布了新的文献求助10
6分钟前
咯咯咯发布了新的文献求助20
6分钟前
6分钟前
超级雅霜发布了新的文献求助10
6分钟前
陶醉的烤鸡完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI2S应助程风破浪采纳,获得10
7分钟前
细心怜寒发布了新的文献求助10
7分钟前
美好乐松应助乐生采纳,获得10
7分钟前
哇咔咔完成签到 ,获得积分10
7分钟前
7分钟前
cc完成签到 ,获得积分10
7分钟前
7分钟前
宣灵薇完成签到,获得积分0
7分钟前
汤万天发布了新的文献求助10
8分钟前
9分钟前
11发布了新的文献求助10
9分钟前
9分钟前
银河苏打发布了新的文献求助10
9分钟前
银河苏打完成签到,获得积分10
9分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133930
求助须知:如何正确求助?哪些是违规求助? 2784834
关于积分的说明 7768641
捐赠科研通 2440188
什么是DOI,文献DOI怎么找? 1297291
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791