亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning system for detection of early Barrett's neoplasia: a model development and validation study

巴雷特食道 医学 标杆管理 考试(生物学) 发育不良 人工智能 内科学 放射科 胃肠病学 癌症 腺癌 计算机科学 生物 业务 古生物学 营销
作者
Kiki Fockens,M. R. Jong,J-Wouter Jukema,Tim Boers,Carolus H. J. Kusters,Joost van der Putten,Roos E. Pouw,Lucas C. Duits,Nahid S.M. Montazeri,Sanne N. van Munster,Bas L. Weusten,Lorenza Alvarez Herrero,MHMG Houben,WB Nagengast,Jessie Westerhof,A. Alkhalaf,Rosalie C. Mallant–Hent,Pieter Scholten,Krish Ragunath,Stefan Seewald
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (12): e905-e916 被引量:25
标识
DOI:10.1016/s2589-7500(23)00199-1
摘要

BackgroundComputer-aided detection (CADe) systems could assist endoscopists in detecting early neoplasia in Barrett's oesophagus, which could be difficult to detect in endoscopic images. The aim of this study was to develop, test, and benchmark a CADe system for early neoplasia in Barrett's oesophagus.MethodsThe CADe system was first pretrained with ImageNet followed by domain-specific pretraining with GastroNet. We trained the CADe system on a dataset of 14 046 images (2506 patients) of confirmed Barrett's oesophagus neoplasia and non-dysplastic Barrett's oesophagus from 15 centres. Neoplasia was delineated by 14 Barrett's oesophagus experts for all datasets. We tested the performance of the CADe system on two independent test sets. The all-comers test set comprised 327 (73 patients) non-dysplastic Barrett's oesophagus images, 82 (46 patients) neoplastic images, 180 (66 of the same patients) non-dysplastic Barrett's oesophagus videos, and 71 (45 of the same patients) neoplastic videos. The benchmarking test set comprised 100 (50 patients) neoplastic images, 300 (125 patients) non-dysplastic images, 47 (47 of the same patients) neoplastic videos, and 141 (82 of the same patients) non-dysplastic videos, and was enriched with subtle neoplasia cases. The benchmarking test set was evaluated by 112 endoscopists from six countries (first without CADe and, after 6 weeks, with CADe) and by 28 external international Barrett's oesophagus experts. The primary outcome was the sensitivity of Barrett's neoplasia detection by general endoscopists without CADe assistance versus with CADe assistance on the benchmarking test set. We compared sensitivity using a mixed-effects logistic regression model with conditional odds ratios (ORs; likelihood profile 95% CIs).FindingsSensitivity for neoplasia detection among endoscopists increased from 74% to 88% with CADe assistance (OR 2·04; 95% CI 1·73–2·42; p<0·0001 for images and from 67% to 79% [2·35; 1·90–2·94; p<0·0001] for video) without compromising specificity (from 89% to 90% [1·07; 0·96–1·19; p=0·20] for images and from 96% to 94% [0·94; 0·79–1·11; ] for video; p=0·46). In the all-comers test set, CADe detected neoplastic lesions in 95% (88–98) of images and 97% (90–99) of videos. In the benchmarking test set, the CADe system was superior to endoscopists in detecting neoplasia (90% vs 74% [OR 3·75; 95% CI 1·93–8·05; p=0·0002] for images and 91% vs 67% [11·68; 3·85–47·53; p<0·0001] for video) and non-inferior to Barrett's oesophagus experts (90% vs 87% [OR 1·74; 95% CI 0·83–3·65] for images and 91% vs 86% [2·94; 0·99–11·40] for video).InterpretationCADe outperformed endoscopists in detecting Barrett's oesophagus neoplasia and, when used as an assistive tool, it improved their detection rate. CADe detected virtually all neoplasia in a test set of consecutive cases.FundingOlympus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜火车完成签到,获得积分20
10秒前
anders完成签到 ,获得积分10
22秒前
Criminology34应助sun采纳,获得10
26秒前
tomorrow完成签到,获得积分10
27秒前
王晓雪完成签到,获得积分20
30秒前
乐乐应助firmalter采纳,获得10
45秒前
47秒前
酷波er应助sun采纳,获得10
52秒前
木齐Jay完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助firmalter采纳,获得30
1分钟前
sissiarno发布了新的文献求助300
1分钟前
wmq完成签到,获得积分10
1分钟前
李爱国应助sun采纳,获得10
1分钟前
1分钟前
上官若男应助HZY采纳,获得10
1分钟前
kkk完成签到 ,获得积分10
1分钟前
谢挽风完成签到,获得积分10
1分钟前
善学以致用应助vuu采纳,获得30
1分钟前
火星上含芙完成签到 ,获得积分10
1分钟前
笔墨留香完成签到,获得积分10
1分钟前
科研通AI6应助sun采纳,获得10
1分钟前
忧虑的代容完成签到,获得积分10
1分钟前
1分钟前
奔跑的小熊完成签到 ,获得积分10
1分钟前
有趣的银发布了新的文献求助10
1分钟前
科研通AI6应助sun采纳,获得10
2分钟前
有趣的银完成签到,获得积分10
2分钟前
小蝶完成签到 ,获得积分10
2分钟前
爱学习的YY完成签到 ,获得积分10
2分钟前
共享精神应助干净南风采纳,获得10
2分钟前
sun发布了新的文献求助10
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
归尘发布了新的文献求助10
2分钟前
豆子应助rose采纳,获得20
2分钟前
2分钟前
2分钟前
二丙发布了新的文献求助10
2分钟前
归尘完成签到,获得积分10
2分钟前
sun发布了新的文献求助10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232425
求助须知:如何正确求助?哪些是违规求助? 4401744
关于积分的说明 13699291
捐赠科研通 4268089
什么是DOI,文献DOI怎么找? 2342347
邀请新用户注册赠送积分活动 1339394
关于科研通互助平台的介绍 1295992