亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning system for detection of early Barrett's neoplasia: a model development and validation study

巴雷特食道 医学 标杆管理 考试(生物学) 发育不良 人工智能 内科学 放射科 胃肠病学 癌症 腺癌 计算机科学 生物 业务 古生物学 营销
作者
Kiki Fockens,M. R. Jong,J-Wouter Jukema,Tim Boers,Carolus H. J. Kusters,Joost van der Putten,Roos E. Pouw,Lucas C. Duits,Nahid S.M. Montazeri,Sanne N. van Munster,Bas L. Weusten,Lorenza Alvarez Herrero,MHMG Houben,WB Nagengast,Jessie Westerhof,A. Alkhalaf,Rosalie C. Mallant–Hent,Pieter Scholten,Krish Ragunath,Stefan Seewald
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (12): e905-e916 被引量:25
标识
DOI:10.1016/s2589-7500(23)00199-1
摘要

BackgroundComputer-aided detection (CADe) systems could assist endoscopists in detecting early neoplasia in Barrett's oesophagus, which could be difficult to detect in endoscopic images. The aim of this study was to develop, test, and benchmark a CADe system for early neoplasia in Barrett's oesophagus.MethodsThe CADe system was first pretrained with ImageNet followed by domain-specific pretraining with GastroNet. We trained the CADe system on a dataset of 14 046 images (2506 patients) of confirmed Barrett's oesophagus neoplasia and non-dysplastic Barrett's oesophagus from 15 centres. Neoplasia was delineated by 14 Barrett's oesophagus experts for all datasets. We tested the performance of the CADe system on two independent test sets. The all-comers test set comprised 327 (73 patients) non-dysplastic Barrett's oesophagus images, 82 (46 patients) neoplastic images, 180 (66 of the same patients) non-dysplastic Barrett's oesophagus videos, and 71 (45 of the same patients) neoplastic videos. The benchmarking test set comprised 100 (50 patients) neoplastic images, 300 (125 patients) non-dysplastic images, 47 (47 of the same patients) neoplastic videos, and 141 (82 of the same patients) non-dysplastic videos, and was enriched with subtle neoplasia cases. The benchmarking test set was evaluated by 112 endoscopists from six countries (first without CADe and, after 6 weeks, with CADe) and by 28 external international Barrett's oesophagus experts. The primary outcome was the sensitivity of Barrett's neoplasia detection by general endoscopists without CADe assistance versus with CADe assistance on the benchmarking test set. We compared sensitivity using a mixed-effects logistic regression model with conditional odds ratios (ORs; likelihood profile 95% CIs).FindingsSensitivity for neoplasia detection among endoscopists increased from 74% to 88% with CADe assistance (OR 2·04; 95% CI 1·73–2·42; p<0·0001 for images and from 67% to 79% [2·35; 1·90–2·94; p<0·0001] for video) without compromising specificity (from 89% to 90% [1·07; 0·96–1·19; p=0·20] for images and from 96% to 94% [0·94; 0·79–1·11; ] for video; p=0·46). In the all-comers test set, CADe detected neoplastic lesions in 95% (88–98) of images and 97% (90–99) of videos. In the benchmarking test set, the CADe system was superior to endoscopists in detecting neoplasia (90% vs 74% [OR 3·75; 95% CI 1·93–8·05; p=0·0002] for images and 91% vs 67% [11·68; 3·85–47·53; p<0·0001] for video) and non-inferior to Barrett's oesophagus experts (90% vs 87% [OR 1·74; 95% CI 0·83–3·65] for images and 91% vs 86% [2·94; 0·99–11·40] for video).InterpretationCADe outperformed endoscopists in detecting Barrett's oesophagus neoplasia and, when used as an assistive tool, it improved their detection rate. CADe detected virtually all neoplasia in a test set of consecutive cases.FundingOlympus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34发布了新的文献求助30
4秒前
酷波er应助科研通管家采纳,获得50
8秒前
馆长应助科研通管家采纳,获得10
8秒前
GPTea应助科研通管家采纳,获得10
8秒前
馆长应助科研通管家采纳,获得10
8秒前
馆长应助科研通管家采纳,获得10
8秒前
馆长应助科研通管家采纳,获得10
8秒前
yyy完成签到,获得积分10
42秒前
量子星尘发布了新的文献求助10
1分钟前
田様应助百里幻竹采纳,获得10
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
彭于晏应助Harrison采纳,获得10
1分钟前
1分钟前
1分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
2分钟前
hehe_733发布了新的文献求助50
2分钟前
陶醉的烤鸡完成签到 ,获得积分10
2分钟前
感冒药完成签到 ,获得积分10
3分钟前
烟花应助wuuw采纳,获得10
3分钟前
3分钟前
charly发布了新的文献求助10
3分钟前
奔跑的小熊完成签到 ,获得积分10
3分钟前
ataybabdallah完成签到,获得积分10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
GPTea应助科研通管家采纳,获得50
4分钟前
hehe_733完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
易昭华发布了新的文献求助10
4分钟前
易昭华完成签到,获得积分20
4分钟前
5分钟前
wuuw发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910180
求助须知:如何正确求助?哪些是违规求助? 4186131
关于积分的说明 12999160
捐赠科研通 3953457
什么是DOI,文献DOI怎么找? 2167943
邀请新用户注册赠送积分活动 1186401
关于科研通互助平台的介绍 1093455