Predicting Financial Distress Using a MIDAS Hazard Model: Evidence from Listed Companies in China

中国 危险系数 财务 精算学 财务比率 经济 利润率 业务 政治学 置信区间 统计 数学 法学
作者
Xiangrong Li,Maojun Zhang,Jiangxia Nan,Qingyuan Yang
出处
期刊:Emerging Markets Finance and Trade [Informa]
卷期号:: 1-10
标识
DOI:10.1080/1540496x.2023.2244140
摘要

ABSTRACTThis study aims to predict financial distress in an emerging country using data on ST listed companies in China from 2001 to 2021. A new Aalen hazard model with mixed data sampling (MIDAS) is adopted to investigate the impact of monthly macroeconomic variables and quarterly financial variables on financial distress. The empirical results show that the current ratio, operating profit ratio, current capital ratio, retention ratio, profit ratio and income ratio of listed companies have a significant impact on the time-varying intensity of financial distress. The consumer price index has a negative relation with the intensity of financial distress, while the production price index and credit spreads have a positive influence. Finally, the results of the robustness tests are consistent with those with different lag orders.KEYWORDS: Financial distressAalen modelmixed data samplingspecial treatmentJEL: C52G32G33 AcknowledgmentsThe authors would like to thank the editor and the reviewers for their valuable comments and suggestions which are very helpful to improve our article.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work is supported by a National Natural Science Foundation of China Grant [No.71961004, 72061007, 71461005], Social Science Foundation of Jiangsu Province [No. 22GLB009], the Guangxi Science and Technology base and Talent Project [No. AD22080047], the National Social Science Key Fund of China [No. 17AJL012], the Science Foundation of Suzhou University of Science and Technology [No. 332111807, 332111801], the Interdisciplinary Scientific Research Foundation of Applied Economics of GuangXi University [No. 2023JJJXA08], the Guangxi Vocational Education Teaching Reform Project [No. GXGZJG2020A055].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈chq发布了新的文献求助30
1秒前
kwx完成签到,获得积分10
1秒前
云无心完成签到 ,获得积分10
1秒前
CipherSage应助Shiyedd采纳,获得10
2秒前
普通鹏发布了新的文献求助10
2秒前
ZZ发布了新的文献求助10
2秒前
小二郎应助无辜不言采纳,获得10
3秒前
xjcy应助耍酷花卷采纳,获得10
3秒前
4秒前
辛夷flower发布了新的文献求助10
5秒前
5秒前
Ava应助风趣尔琴采纳,获得10
5秒前
5秒前
程程完成签到,获得积分10
5秒前
6秒前
7秒前
xxx发布了新的文献求助20
7秒前
8秒前
freshman关注了科研通微信公众号
8秒前
8秒前
jojo完成签到,获得积分20
8秒前
金木水火土完成签到,获得积分10
9秒前
潘先森完成签到,获得积分10
9秒前
9秒前
9秒前
风趣尔琴完成签到,获得积分10
9秒前
10秒前
大个应助滴滴滴采纳,获得10
10秒前
Leohp发布了新的文献求助10
10秒前
那里有颗星星完成签到,获得积分10
11秒前
资浩阑发布了新的文献求助10
11秒前
完美世界应助lbm采纳,获得10
11秒前
11秒前
顾矜应助神勇的觅夏采纳,获得10
12秒前
星月夜应助阔达的太阳采纳,获得10
12秒前
大模型应助大胆的星月采纳,获得10
13秒前
13秒前
13秒前
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227601
求助须知:如何正确求助?哪些是违规求助? 2875589
关于积分的说明 8191848
捐赠科研通 2542829
什么是DOI,文献DOI怎么找? 1373128
科研通“疑难数据库(出版商)”最低求助积分说明 646685
邀请新用户注册赠送积分活动 621178