Predicting Financial Distress Using a MIDAS Hazard Model: Evidence from Listed Companies in China

中国 危险系数 财务 精算学 财务比率 经济 利润率 业务 政治学 置信区间 数学 统计 法学
作者
Xiangrong Li,Maojun Zhang,Jiangxia Nan,Qingyuan Yang
出处
期刊:Emerging Markets Finance and Trade [Taylor & Francis]
卷期号:: 1-10
标识
DOI:10.1080/1540496x.2023.2244140
摘要

ABSTRACTThis study aims to predict financial distress in an emerging country using data on ST listed companies in China from 2001 to 2021. A new Aalen hazard model with mixed data sampling (MIDAS) is adopted to investigate the impact of monthly macroeconomic variables and quarterly financial variables on financial distress. The empirical results show that the current ratio, operating profit ratio, current capital ratio, retention ratio, profit ratio and income ratio of listed companies have a significant impact on the time-varying intensity of financial distress. The consumer price index has a negative relation with the intensity of financial distress, while the production price index and credit spreads have a positive influence. Finally, the results of the robustness tests are consistent with those with different lag orders.KEYWORDS: Financial distressAalen modelmixed data samplingspecial treatmentJEL: C52G32G33 AcknowledgmentsThe authors would like to thank the editor and the reviewers for their valuable comments and suggestions which are very helpful to improve our article.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work is supported by a National Natural Science Foundation of China Grant [No.71961004, 72061007, 71461005], Social Science Foundation of Jiangsu Province [No. 22GLB009], the Guangxi Science and Technology base and Talent Project [No. AD22080047], the National Social Science Key Fund of China [No. 17AJL012], the Science Foundation of Suzhou University of Science and Technology [No. 332111807, 332111801], the Interdisciplinary Scientific Research Foundation of Applied Economics of GuangXi University [No. 2023JJJXA08], the Guangxi Vocational Education Teaching Reform Project [No. GXGZJG2020A055].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bit完成签到,获得积分10
1秒前
1秒前
2秒前
生动的凡松完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
Ava应助阿湫采纳,获得10
4秒前
wangling2333应助Tangviva1988采纳,获得10
4秒前
万能图书馆应助chenm0333042采纳,获得10
6秒前
科研通AI2S应助从不内卷采纳,获得10
6秒前
单薄的风华完成签到,获得积分20
6秒前
6秒前
wewtetret发布了新的文献求助10
6秒前
小children丙完成签到,获得积分10
6秒前
废羊羊发布了新的文献求助10
6秒前
6秒前
7秒前
边瑞明发布了新的文献求助10
7秒前
8秒前
乔乔兔应助向雨竹采纳,获得10
8秒前
9秒前
zl12345完成签到,获得积分10
9秒前
serein发布了新的文献求助10
9秒前
华仔应助棋士采纳,获得10
9秒前
baomingqiu完成签到,获得积分10
9秒前
NexusExplorer应助承乐采纳,获得10
9秒前
坚强幼晴发布了新的文献求助10
10秒前
lingyu发布了新的文献求助10
10秒前
8R60d8应助Kristal采纳,获得10
10秒前
11秒前
研友_VZG7GZ应助逍遥采纳,获得10
11秒前
11秒前
哈密哈密完成签到,获得积分10
11秒前
bkagyin应助llllll采纳,获得10
11秒前
ll发布了新的文献求助10
11秒前
wss发布了新的文献求助10
12秒前
顾远发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154