Discovering New Intents Via Constrained Deep Adaptive Clustering with Cluster Refinement

聚类分析 计算机科学 过度拟合 水准点(测量) 成对比较 数据挖掘 机器学习 星团(航天器) 过程(计算) 人工智能 特征(语言学) 任务(项目管理) 人工神经网络 工程类 地理 语言学 哲学 大地测量学 系统工程 程序设计语言 操作系统
作者
Hua Xu,Hanlei Zhang,Ting-En Lin
出处
期刊:SpringerBriefs in computer science 卷期号:: 99-113
标识
DOI:10.1007/978-981-99-3885-8_8
摘要

Identifying new user intents is an essential task in the dialogue system. However, it is hard to get satisfying clustering results since the definition of intents is strongly guided by prior knowledge. Existing methods incorporate prior knowledge by intensive feature engineering, which not only leads to overfitting but also makes it sensitive to the number of clusters. In this chapter, we introduce constrained deep adaptive clustering with cluster refinement (CDAC+), an end-to-end clustering method that can naturally incorporate pairwise constraints as prior knowledge to guide the clustering process. Moreover, the clusters are refined by forcing the model to learn from the high confidence assignments. After eliminating low confidence assignments, the approach presented is surprisingly insensitive to the number of clusters. Experimental results on the three benchmark datasets show that the method presented can yield significant improvements over strong baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
momo完成签到,获得积分10
1秒前
慕青应助饕餮1235采纳,获得10
1秒前
小蘑菇应助CC采纳,获得10
2秒前
白白完成签到,获得积分10
2秒前
2秒前
2秒前
苏苏完成签到,获得积分10
3秒前
3秒前
wu完成签到,获得积分10
3秒前
3秒前
4秒前
MADKAI发布了新的文献求助10
4秒前
4秒前
李健的小迷弟应助111采纳,获得10
5秒前
Accept应助wintercyan采纳,获得20
5秒前
哲999完成签到,获得积分10
5秒前
Mian完成签到,获得积分10
5秒前
6秒前
6秒前
于嗣濠完成签到 ,获得积分10
6秒前
36456657应助CC采纳,获得10
6秒前
优雅山柏发布了新的文献求助10
7秒前
Jacky完成签到,获得积分10
7秒前
脑洞疼应助无情的白桃采纳,获得10
7秒前
mm发布了新的文献求助10
7秒前
8秒前
8秒前
zoko发布了新的文献求助10
8秒前
8秒前
曾经的臻发布了新的文献求助10
8秒前
华仔应助S1mple_gentleman采纳,获得10
8秒前
科研通AI5应助CC采纳,获得10
8秒前
8秒前
9秒前
9秒前
张静静完成签到,获得积分10
10秒前
10秒前
震666发布了新的文献求助30
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740