Future-aware and High-order representation learning for cold-start recommendation

计算机科学 推荐系统 电影 采购 冷启动(汽车) 图形 代表(政治) 订单(交换) 机器学习 人工智能 理论计算机科学 协同过滤 运营管理 财务 政治 经济 法学 政治学 工程类 航空航天工程
作者
Junruo Gao,Yuyang Liu,Jun Li,Liang Zhao
标识
DOI:10.1109/smartworld-uic-atc-scalcom-digitaltwin-pricomp-metaverse56740.2022.00142
摘要

The Cold-start problem is critical but challenging for dynamic recommender systems since new entities (users/items) are added dynamically without any purchasing behavior. Most existing methods solve the problem by building the relationship between cold-start entities and existing entities. However, due to several challenges, such approaches can not effectively handle the cold start in dynamic recommender systems. It is hard to learn and predict dynamically for constantly added entities without any historical interactions. Moreover, it is challenging to characterize cold-start entities precisely for indicating future purchasing with limited information. This paper formalizes the dynamic recommender systems as a time-evolving graph to handle the challenges of modeling the dynamic relations between users and items. Mainly, we design a unified learning framework that can learn future-aware representations for newly added entities. Additionally, we build a novel mapping function to model high-order interactions between attributes and further convey obtained expressive information to the high-order neighbors on the graph. Extensive experiments were conducted, and the results demonstrate the outstanding performance of the proposed method on MovieLens 1M and LastFM datasets, providing at least 16.69% and 11.11% relative performance gains, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yls完成签到,获得积分10
刚刚
GK发布了新的文献求助10
1秒前
科研小菜鸡完成签到 ,获得积分10
2秒前
2秒前
幸运咖里的冰柠咖完成签到,获得积分10
2秒前
2秒前
天荻荏发布了新的文献求助10
2秒前
汤汤杨杨完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
研友_89jr6L完成签到,获得积分10
6秒前
羊羊发布了新的文献求助10
7秒前
兴奋采梦发布了新的文献求助10
7秒前
Hello应助威武的幻波采纳,获得10
7秒前
康康XY完成签到 ,获得积分10
7秒前
东溟渔夫发布了新的文献求助10
9秒前
dd发布了新的文献求助10
9秒前
威武的翠安完成签到 ,获得积分10
10秒前
Dale完成签到,获得积分10
10秒前
12秒前
东溟渔夫完成签到,获得积分10
14秒前
16秒前
wangmin发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
一只萌新完成签到,获得积分10
18秒前
ThomasZ完成签到,获得积分10
22秒前
zzzyyy应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得30
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得30
22秒前
小二郎应助科研通管家采纳,获得10
23秒前
吃点水果保护局完成签到 ,获得积分10
23秒前
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738776
求助须知:如何正确求助?哪些是违规求助? 3282132
关于积分的说明 10027895
捐赠科研通 2998878
什么是DOI,文献DOI怎么找? 1645644
邀请新用户注册赠送积分活动 782858
科研通“疑难数据库(出版商)”最低求助积分说明 750049