SMOTE-kTLNN: A hybrid re-sampling method based on SMOTE and a two-layer nearest neighbor classifier

计算机科学 欠采样 过采样 人工智能 模式识别(心理学) 分类器(UML) 支持向量机 阿达布思 数据挖掘 机器学习 带宽(计算) 计算机网络
作者
Pengfei Sun,Zhiping Wang,Liyan Jia,Zhaohui Xu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121848-121848 被引量:20
标识
DOI:10.1016/j.eswa.2023.121848
摘要

In recent years, class-imbalanced learning has become an important branch of machine learning. Synthetic Minority Oversampling Technique (SMOTE) is known as a benchmark method to address imbalanced learning. Although SMOTE performs well on many data, it also has the drawback of generating noisy samples. There are many SMOTE variants to solve this problem. Specifically, these methods are hybrid sampling methods, that is, carrying out an undersampling stage after SMOTE to remove noisy samples. It requires a method that can accurately identify noise to provide reliable performance. In this paper, a hybrid re-sampling method based on SMOTE and a two-layer nearest neighbor classifier (SMOTE-kTLNN) is proposed. SMOTE-kTLNN recognition noise is realized by an Iterative-Partitioning Filter (IPF). Specifically, SMOTE is performed on the original data to balance the data, then the data is divided into n equal parts, establishing kTLNN on each part to predict the whole data. And noisy samples are removed according to the majority voting rule. In the last, the balanced data sets are used to train kNN, AdaBoost, and SVM to verify whether SMOTE-kTLNN is irrelevant to the classifier. The experiment results demonstrate that SMOTE-kTLNN performs better than the comparisons in 25 binary data sets, including Recall, AUC, F1-measure, and G-mean.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助虚幻的大大采纳,获得10
1秒前
lyx2010完成签到,获得积分10
1秒前
1秒前
123发布了新的文献求助10
1秒前
谨慎的不愁关注了科研通微信公众号
1秒前
1秒前
2秒前
caopeili发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
852应助布谷采纳,获得10
3秒前
zho发布了新的文献求助10
3秒前
4秒前
熊巴巴完成签到 ,获得积分10
4秒前
5秒前
朱子完成签到,获得积分10
5秒前
无尽红蓝完成签到,获得积分10
6秒前
毛毛发布了新的文献求助10
6秒前
稳重雁易发布了新的文献求助10
6秒前
执着书南发布了新的文献求助10
7秒前
在水一方应助123采纳,获得10
7秒前
7秒前
wei发布了新的文献求助10
7秒前
月月鸟发布了新的文献求助10
8秒前
FSS发布了新的文献求助10
8秒前
9秒前
小肾脏完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
天天快乐应助PG采纳,获得10
10秒前
小粉丝完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
miemie发布了新的文献求助10
11秒前
11秒前
勤劳宛菡完成签到 ,获得积分10
12秒前
Chenzhs发布了新的文献求助10
12秒前
李健应助xx采纳,获得10
13秒前
星辰大海应助ccm采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5165143
求助须知:如何正确求助?哪些是违规求助? 4357538
关于积分的说明 13567398
捐赠科研通 4203399
什么是DOI,文献DOI怎么找? 2305198
邀请新用户注册赠送积分活动 1305131
关于科研通互助平台的介绍 1251539