SMOTE-kTLNN: A hybrid re-sampling method based on SMOTE and a two-layer nearest neighbor classifier

计算机科学 欠采样 过采样 人工智能 模式识别(心理学) 分类器(UML) 支持向量机 阿达布思 数据挖掘 机器学习 带宽(计算) 计算机网络
作者
Pengfei Sun,Zhiping Wang,Liyan Jia,Zhaohui Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121848-121848
标识
DOI:10.1016/j.eswa.2023.121848
摘要

In recent years, class-imbalanced learning has become an important branch of machine learning. Synthetic Minority Oversampling Technique (SMOTE) is known as a benchmark method to address imbalanced learning. Although SMOTE performs well on many data, it also has the drawback of generating noisy samples. There are many SMOTE variants to solve this problem. Specifically, these methods are hybrid sampling methods, that is, carrying out an undersampling stage after SMOTE to remove noisy samples. It requires a method that can accurately identify noise to provide reliable performance. In this paper, a hybrid re-sampling method based on SMOTE and a two-layer nearest neighbor classifier (SMOTE-kTLNN) is proposed. SMOTE-kTLNN recognition noise is realized by an Iterative-Partitioning Filter (IPF). Specifically, SMOTE is performed on the original data to balance the data, then the data is divided into n equal parts, establishing kTLNN on each part to predict the whole data. And noisy samples are removed according to the majority voting rule. In the last, the balanced data sets are used to train kNN, AdaBoost, and SVM to verify whether SMOTE-kTLNN is irrelevant to the classifier. The experiment results demonstrate that SMOTE-kTLNN performs better than the comparisons in 25 binary data sets, including Recall, AUC, F1-measure, and G-mean.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nano发布了新的文献求助10
1秒前
孟韩发布了新的文献求助10
2秒前
董小星发布了新的文献求助10
3秒前
葳葳完成签到,获得积分10
3秒前
Finen发布了新的文献求助10
4秒前
6秒前
cherry完成签到 ,获得积分10
7秒前
ccciii完成签到,获得积分10
7秒前
妮子拉完成签到,获得积分10
8秒前
z1y1p1发布了新的文献求助10
10秒前
自信晓博完成签到,获得积分10
10秒前
赘婿应助若雨蒙采纳,获得10
11秒前
Dexter完成签到,获得积分10
11秒前
123发布了新的文献求助10
12秒前
桐桐应助唔西迪西采纳,获得10
14秒前
辣妹小熊完成签到,获得积分10
15秒前
Finen完成签到,获得积分10
15秒前
李健的小迷弟应助叶世玉采纳,获得10
16秒前
19秒前
木子三少完成签到,获得积分0
19秒前
19秒前
19秒前
深夜空想家完成签到,获得积分10
19秒前
khaosyi发布了新的文献求助10
21秒前
22秒前
dd发布了新的文献求助10
24秒前
走啊完成签到,获得积分10
24秒前
ying发布了新的文献求助30
25秒前
若雨蒙发布了新的文献求助10
26秒前
28秒前
ying完成签到,获得积分20
31秒前
若雨蒙完成签到,获得积分20
32秒前
ccciii发布了新的文献求助10
33秒前
今后应助西门子云采纳,获得10
33秒前
33秒前
34秒前
36秒前
123完成签到 ,获得积分20
37秒前
鱼鱼完成签到,获得积分10
38秒前
hh完成签到,获得积分10
38秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168354
求助须知:如何正确求助?哪些是违规求助? 2819697
关于积分的说明 7927596
捐赠科研通 2479609
什么是DOI,文献DOI怎么找? 1321007
科研通“疑难数据库(出版商)”最低求助积分说明 632925
版权声明 602460