奇异值分解
断层(地质)
信号(编程语言)
方位(导航)
汉克尔矩阵
奇异值
算法
振幅
主成分分析
计算机科学
熵(时间箭头)
振动
奇异谱分析
组分(热力学)
数学
控制理论(社会学)
数学分析
人工智能
特征向量
声学
物理
地震学
地质学
程序设计语言
量子力学
控制(管理)
热力学
作者
Miaorui Yang,Yonggang Xu,Kun Zhang,Xiangfeng Zhang
标识
DOI:10.1088/1361-6501/acfe2e
摘要
Abstract In the rolling bearing fault diagnosis based on vibration signal, the feature information always exists in the specific sideband of the signal. Singular value, as a mathematical quantity can represent the characteristic information of data, provides the theoretical support for extracting fault information from signals. Based on this, this paper proposes a new method called singular component decomposition. The signal is divided into components by the signal spectrum trend. Through linear transformation of Hankel matrix constructed by each component, the corresponding singular values are calculated. Combined with the amplitude filtering characteristic and the time domain negative entropy index, the effective singular values are screened out. The reconstructed components retain complete fault information for fault diagnosis of rolling bearings. The simulation and experimental results show that the
SCD can extract the effective information to the maximum extent to realize the fault diagnosis of the signal.
科研通智能强力驱动
Strongly Powered by AbleSci AI