原发性醛固酮增多症
醛固酮
医学
肾小球带
醛固酮合酶
肾上腺
继发性高血压
原发性高血压
血压
内科学
生物信息学
内分泌学
肾素-血管紧张素系统
血管紧张素II
生物
作者
Elena Azizan,William Drake,Morris J. Brown
标识
DOI:10.1038/s41581-023-00753-6
摘要
Primary aldosteronism is the most common single cause of hypertension and is potentially curable when only one adrenal gland is the culprit. The importance of primary aldosteronism to public health derives from its high prevalence but huge under-diagnosis (estimated to be <1% of all affected individuals), despite the consequences of poor blood pressure control by conventional therapy and enhanced cardiovascular risk. This state of affairs is attributable to the fact that the tools used for diagnosis or treatment are still those that originated in the 1970–1990s. Conversely, molecular discoveries have transformed our understanding of adrenal physiology and pathology. Many molecules and processes associated with constant adrenocortical renewal and interzonal metamorphosis also feature in aldosterone-producing adenomas and aldosterone-producing micronodules. The adrenal gland has one of the most significant rates of non-silent somatic mutations, with frequent selection of those driving autonomous aldosterone production, and distinct clinical presentations and outcomes for most genotypes. The disappearance of aldosterone synthesis and cells from most of the adult human zona glomerulosa is the likely driver of the mutational success that causes aldosterone-producing adenomas, but insights into the pathways that lead to constitutive aldosterone production and cell survival may open up opportunities for novel therapies. Primary aldosteronism is the most common cause of endocrine arterial hypertension and is characterized by the autonomous production of aldosterone from one or both adrenal glands. This Review describes the molecular discoveries and developments that have the potential to transform the clinical management of patients with this disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI