Are both generative AI and ChatGPT game changers for 21st-Century operations and supply chain excellence?

供应链 早期采用者 卓越运营 供应链管理 卓越 业务 知识管理 生成语法 营销 计算机科学 人工智能 政治学 法学
作者
Samuel Fosso Wamba,Maciel M. Queiroz,Charbel José Chiappetta Jabbour,Chunming Shi
出处
期刊:International Journal of Production Economics [Elsevier]
卷期号:265: 109015-109015 被引量:92
标识
DOI:10.1016/j.ijpe.2023.109015
摘要

The remarkable growth of ChatGPT, a Generative Artificial Intelligence (Gen-AI), has triggered a significant debate in society. It has the potential to radically transform the business landscape, with consequences for operations and supply chain management (O&SCM). However, empirical evidence on Gen-AI's effects in O&SCM remains limited. This study investigates the benefits, challenges, and trends associated with Gen-AI/ChatGPT in O&SCM. We collected data from O&SCM practitioners in the UK (N = 154) and the USA (N = 161). As we used the organizational learning theory for the research, our findings reveal increased efficiency as a significant benefit for both adopters and non-adopters in both countries, while indicating security, risks, and ethical as prominent concerns. In particular, it appeared that the integration of Gen-AI/ChatGPT leads to the enhancement of the overall supply chain performance. Moreover, organizational learning can speed up the results of Gen-AI/ChatGPT in O&SCM. No wonders that adopters express their satisfaction about the post-implementation benefits of the technology, which include reduced perceived challenges for pre-implementation, and greater optimism about future Gen-AI/ChatGPT utilization compared to non-adopters. Adopters also display diverse behavioral patterns toward efficiency, agility, responsiveness, etc. This study provides valuable insights for scholars, practitioners, and policymakers interested in comprehending Gen-AI/ChatGPT's implications in O&SCM for both adopters and non-adopters. Additionally, it underscores the importance of organizational learning processes in facilitating successful Gen-AI/ChatGPT adoption in O&SCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sissiarno应助科研通管家采纳,获得30
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
科目三应助吴未采纳,获得10
1秒前
俊逸凌兰发布了新的文献求助10
1秒前
科研通AI2S应助合适不愁采纳,获得10
2秒前
2秒前
Lionnn完成签到 ,获得积分10
3秒前
吹又生发布了新的文献求助10
5秒前
伶俐飞荷完成签到,获得积分20
7秒前
8秒前
12秒前
慕青应助applemajh采纳,获得10
12秒前
12秒前
周周发布了新的文献求助10
12秒前
12秒前
zcx完成签到,获得积分10
12秒前
14秒前
小鹿完成签到,获得积分10
14秒前
14秒前
吹又生完成签到,获得积分10
14秒前
15秒前
15秒前
17秒前
17秒前
JamesPei应助苏静苒采纳,获得10
17秒前
18秒前
NexusExplorer应助伶俐飞荷采纳,获得10
18秒前
云里发布了新的文献求助10
19秒前
daniel发布了新的文献求助10
19秒前
许问完成签到,获得积分10
20秒前
20秒前
20秒前
不配.应助健康的绮南采纳,获得10
21秒前
李田田发布了新的文献求助10
22秒前
22秒前
陶醉的匕发布了新的文献求助10
25秒前
大模型应助简单的海秋采纳,获得10
25秒前
26秒前
汉堡包应助合适不愁采纳,获得10
27秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387255
求助须知:如何正确求助?哪些是违规求助? 3000118
关于积分的说明 8789340
捐赠科研通 2685905
什么是DOI,文献DOI怎么找? 1471378
科研通“疑难数据库(出版商)”最低求助积分说明 680208
邀请新用户注册赠送积分活动 672982