清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A dual attention LSTM lightweight model based on exponential smoothing for remaining useful life prediction

指数平滑 计算机科学 特征(语言学) 加权 编码(内存) 人工智能 对偶(语法数字) 平滑的 过程(计算) 编码器 机器学习 数据挖掘 模式识别(心理学) 文学类 艺术 哲学 放射科 操作系统 医学 语言学 计算机视觉
作者
Jiayu Shi,Jingshu Zhong,Yuxuan Zhang,Bin Xiao,Lei Xiao,Yu Zheng
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:243: 109821-109821 被引量:106
标识
DOI:10.1016/j.ress.2023.109821
摘要

Accurate remaining useful life (RUL) prediction of degrading systems is crucial to predict failures in advance and develop maintenance plans. As systems degrade gradually over time, sequential degradation feature (SDF) is very important. However, in attention mechanism (AM) based RUL prediction approaches, the sequential operation at each time step is abandoned. Further, these methods are modeled based on numerous parameters, making it difficult to enable timely RUL prediction. Therefore, this paper proposes a dual attention and long short-term memory (LSTM) lightweight model (DA-LSTM). LSTM compensates for the shortcomings of AM in modeling SDF, and exponential smoothing is adopted to train a lightweight model. Specifically, the SDF is divided into aggregated encoding feature (AEF) and aggregated original feature (AOF). AEF is obtained by the encoder which includes a novel soft attention mechanism and an LSTM network. To prevent losing useful information during the encoding process, the second attention layer aggregates the original sensor signal to obtain AOF. Finally, the decoder LSTM network combines AEF with AOF and calculates RUL based on a weighting average method. Extensive experiments are conducted on the C-MAPSS dataset to verify model effectiveness. The results show the superiority of DA-LSTM in prediction accuracy and computational quantity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素海亦完成签到 ,获得积分10
4秒前
9秒前
1分钟前
1分钟前
1分钟前
小白菜完成签到,获得积分10
1分钟前
1分钟前
袁青寒完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
TEMPO发布了新的文献求助10
2分钟前
魔术师完成签到 ,获得积分10
2分钟前
2分钟前
瞿寒完成签到,获得积分10
2分钟前
快乐的笑阳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
香蕉觅云应助huenguyenvan采纳,获得10
2分钟前
李健应助阿萨卡先生采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Ava应助阿萨卡先生采纳,获得10
3分钟前
ZaZa完成签到,获得积分10
3分钟前
3分钟前
3分钟前
李剑鸿完成签到,获得积分10
3分钟前
李剑鸿发布了新的文献求助100
3分钟前
4分钟前
4分钟前
胖小羊完成签到 ,获得积分10
4分钟前
junzzz完成签到 ,获得积分10
4分钟前
爆米花应助Omni采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
aming发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210