Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision

计算机科学 深度学习 可解释性 人工智能 数据科学 比例(比率) 模式 医学影像学 再培训 机器学习 领域(数学分析) 数学分析 国际贸易 业务 社会学 物理 量子力学 社会科学 数学
作者
Bobby Azad,Reza Azad,Sania Eskandari,Afshin Bozorgpour,Amirhossein Kazerouni,Islem Rekik,Dorit Merhof
出处
期刊:Cornell University - arXiv 被引量:12
标识
DOI:10.48550/arxiv.2310.18689
摘要

Foundation models, large-scale, pre-trained deep-learning models adapted to a wide range of downstream tasks have gained significant interest lately in various deep-learning problems undergoing a paradigm shift with the rise of these models. Trained on large-scale dataset to bridge the gap between different modalities, foundation models facilitate contextual reasoning, generalization, and prompt capabilities at test time. The predictions of these models can be adjusted for new tasks by augmenting the model input with task-specific hints called prompts without requiring extensive labeled data and retraining. Capitalizing on the advances in computer vision, medical imaging has also marked a growing interest in these models. To assist researchers in navigating this direction, this survey intends to provide a comprehensive overview of foundation models in the domain of medical imaging. Specifically, we initiate our exploration by providing an exposition of the fundamental concepts forming the basis of foundation models. Subsequently, we offer a methodical taxonomy of foundation models within the medical domain, proposing a classification system primarily structured around training strategies, while also incorporating additional facets such as application domains, imaging modalities, specific organs of interest, and the algorithms integral to these models. Furthermore, we emphasize the practical use case of some selected approaches and then discuss the opportunities, applications, and future directions of these large-scale pre-trained models, for analyzing medical images. In the same vein, we address the prevailing challenges and research pathways associated with foundational models in medical imaging. These encompass the areas of interpretability, data management, computational requirements, and the nuanced issue of contextual comprehension.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助热情的阿猫桑采纳,获得10
刚刚
revew666完成签到,获得积分10
刚刚
独特的飞烟完成签到,获得积分10
刚刚
小蘑菇应助林中鹿采纳,获得10
1秒前
1秒前
zjh完成签到,获得积分10
2秒前
小猫爬楼梯完成签到,获得积分10
4秒前
4秒前
乐枳完成签到 ,获得积分10
4秒前
星宿陨完成签到,获得积分10
5秒前
完美世界应助caidun采纳,获得10
5秒前
6秒前
李爱国应助俊逸夜阑采纳,获得10
6秒前
7秒前
热情的阿猫桑完成签到,获得积分10
8秒前
大个应助oyasimi采纳,获得10
10秒前
10秒前
苹果南烟完成签到,获得积分10
11秒前
所所应助狂野傲南采纳,获得10
11秒前
11秒前
十倍沉完成签到,获得积分10
12秒前
12秒前
wzy完成签到 ,获得积分10
12秒前
14秒前
耳机分你一只诺完成签到 ,获得积分10
15秒前
16秒前
gugu发布了新的文献求助10
16秒前
完美世界应助西门子云采纳,获得10
17秒前
不将就发布了新的文献求助10
17秒前
17秒前
林中鹿发布了新的文献求助10
19秒前
风趣的孤云完成签到,获得积分10
21秒前
zhouyu发布了新的文献求助10
22秒前
zty发布了新的文献求助10
23秒前
狂野傲南发布了新的文献求助10
23秒前
脑洞疼应助谷粱采纳,获得10
26秒前
科研通AI5应助橘子s采纳,获得10
27秒前
sincyking完成签到,获得积分10
28秒前
30秒前
Hello应助如意数据线采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540650
求助须知:如何正确求助?哪些是违规求助? 3117973
关于积分的说明 9333262
捐赠科研通 2815801
什么是DOI,文献DOI怎么找? 1547752
邀请新用户注册赠送积分活动 721172
科研通“疑难数据库(出版商)”最低求助积分说明 712544