Study of multistep Dense U‐Net‐based automatic segmentation for head MRI scans

计算机科学 分割 人工智能 磁共振成像 矢状面 卷积神经网络 模式识别(心理学) 核医学 计算机视觉 医学 放射科
作者
Yongha Gi,Geon Oh,Yunhui Jo,H. Lim,Yousun Ko,Jinyoung Hong,Eunjun Lee,Sangmin Park,Tae-Yeong Kwak,Sang-Cheol Kim,Myonggeun Yoon
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.16824
摘要

Abstract Background Despite extensive efforts to obtain accurate segmentation of magnetic resonance imaging (MRI) scans of a head, it remains challenging primarily due to variations in intensity distribution, which depend on the equipment and parameters used. Purpose The goal of this study is to evaluate the effectiveness of an automatic segmentation method for head MRI scans using a multistep Dense U‐Net (MDU‐Net) architecture. Methods The MDU‐Net‐based method comprises two steps. The first step is to segment the scalp, skull, and whole brain from head MRI scans using a convolutional neural network (CNN). In the first step, a hybrid network is used to combine 2.5D Dense U‐Net and 3D Dense U‐Net structure. This hybrid network acquires logits in three orthogonal planes (axial, coronal, and sagittal) using 2.5D Dense U‐Nets and fuses them by averaging. The resultant fused probability map with head MRI scans then serves as the input to a 3D Dense U‐Net. In this process, different ratios of active contour loss and focal loss are applied. The second step is to segment the cerebrospinal fluid (CSF), white matter, and gray matter from extracted brain MRI scans using CNNs. In the second step, the histogram of the extracted brain MRI scans is standardized and then a 2.5D Dense U‐Net is used to further segment the brain's specific tissues using the focal loss. A dataset of 100 head MRI scans from an OASIS‐3 dataset was used for training, internal validation, and testing, with ratios of 80%, 10%, and 10%, respectively. Using the proposed approach, we segmented the head MRI scans into five areas (scalp, skull, CSF, white matter, and gray matter) and evaluated the segmentation results using the Dice similarity coefficient (DSC) score, Hausdorff distance (HD), and the average symmetric surface distance (ASSD) as evaluation metrics. We compared these results with those obtained using the Res‐U‐Net, Dense U‐Net, U‐Net++, Swin‐Unet, and H‐Dense U‐Net models. Results The MDU‐Net model showed DSC values of 0.933, 0.830, 0.833, 0.953, and 0.917 in the scalp, skull, CSF, white matter, and gray matter, respectively. The corresponding HD values were 2.37, 2.89, 2.13, 1.52, and 1.53 mm, respectively. The ASSD values were 0.50, 1.63, 1.28, 0.26, and 0.27 mm, respectively. Comparing these results with other models revealed that the MDU‐Net model demonstrated the best performance in terms of the DSC values for the scalp, CSF, white matter, and gray matter. When compared with the H‐Dense U‐Net model, which showed the highest performance among the other models, the MDU‐Net model showed substantial improvements in the HD view, particularly in the gray matter region, with a difference of approximately 9%. In addition, in terms of the ASSD, the MDU‐Net model outperformed the H‐Dense U‐Net model, showing an approximately 7% improvements in the white matter and approximately 9% improvements in the gray matter. Conclusion Compared with existing models in terms of DSC, HD, and ASSD, the proposed MDU‐Net model demonstrated the best performance on average and showed its potential to enhance the accuracy of automatic segmentation for head MRI scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿欣完成签到,获得积分10
刚刚
YY发布了新的文献求助10
刚刚
1秒前
怕孤单的丁真完成签到,获得积分10
1秒前
yx_cheng应助sunsold采纳,获得30
1秒前
huangninghuang完成签到,获得积分10
2秒前
鱼跃完成签到,获得积分10
2秒前
研友_nvGWwZ发布了新的文献求助10
2秒前
3秒前
3秒前
鳗鱼盼夏完成签到,获得积分10
4秒前
4秒前
九月完成签到,获得积分10
4秒前
彭于晏应助烩面大师采纳,获得10
4秒前
能干的cen完成签到 ,获得积分10
4秒前
英俊的铭应助fs采纳,获得10
4秒前
丘比特应助fs采纳,获得10
4秒前
5秒前
可以发布了新的文献求助10
5秒前
科研通AI2S应助beikou采纳,获得10
5秒前
可爱丸子完成签到,获得积分10
5秒前
5秒前
6秒前
Ma完成签到,获得积分10
6秒前
Owen应助Robe采纳,获得10
7秒前
Wang发布了新的文献求助10
7秒前
所所应助简单幸福采纳,获得10
8秒前
FashionBoy应助YY采纳,获得10
9秒前
kirito发布了新的文献求助10
9秒前
Ethan完成签到,获得积分10
9秒前
zy_完成签到,获得积分10
9秒前
香蕉易形关注了科研通微信公众号
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
慕青应助Yeee采纳,获得10
11秒前
beituo完成签到,获得积分10
12秒前
12秒前
烂漫代曼完成签到,获得积分10
12秒前
ding应助呼呼采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582