Study of multistep Dense U‐Net‐based automatic segmentation for head MRI scans

计算机科学 分割 人工智能 磁共振成像 矢状面 卷积神经网络 模式识别(心理学) 核医学 计算机视觉 医学 放射科
作者
Yongha Gi,Geon Oh,Yunhui Jo,H. Lim,Yousun Ko,Jinyoung Hong,Eunjun Lee,Sangmin Park,Tae-Yeong Kwak,Sang-Cheol Kim,Myonggeun Yoon
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.16824
摘要

Abstract Background Despite extensive efforts to obtain accurate segmentation of magnetic resonance imaging (MRI) scans of a head, it remains challenging primarily due to variations in intensity distribution, which depend on the equipment and parameters used. Purpose The goal of this study is to evaluate the effectiveness of an automatic segmentation method for head MRI scans using a multistep Dense U‐Net (MDU‐Net) architecture. Methods The MDU‐Net‐based method comprises two steps. The first step is to segment the scalp, skull, and whole brain from head MRI scans using a convolutional neural network (CNN). In the first step, a hybrid network is used to combine 2.5D Dense U‐Net and 3D Dense U‐Net structure. This hybrid network acquires logits in three orthogonal planes (axial, coronal, and sagittal) using 2.5D Dense U‐Nets and fuses them by averaging. The resultant fused probability map with head MRI scans then serves as the input to a 3D Dense U‐Net. In this process, different ratios of active contour loss and focal loss are applied. The second step is to segment the cerebrospinal fluid (CSF), white matter, and gray matter from extracted brain MRI scans using CNNs. In the second step, the histogram of the extracted brain MRI scans is standardized and then a 2.5D Dense U‐Net is used to further segment the brain's specific tissues using the focal loss. A dataset of 100 head MRI scans from an OASIS‐3 dataset was used for training, internal validation, and testing, with ratios of 80%, 10%, and 10%, respectively. Using the proposed approach, we segmented the head MRI scans into five areas (scalp, skull, CSF, white matter, and gray matter) and evaluated the segmentation results using the Dice similarity coefficient (DSC) score, Hausdorff distance (HD), and the average symmetric surface distance (ASSD) as evaluation metrics. We compared these results with those obtained using the Res‐U‐Net, Dense U‐Net, U‐Net++, Swin‐Unet, and H‐Dense U‐Net models. Results The MDU‐Net model showed DSC values of 0.933, 0.830, 0.833, 0.953, and 0.917 in the scalp, skull, CSF, white matter, and gray matter, respectively. The corresponding HD values were 2.37, 2.89, 2.13, 1.52, and 1.53 mm, respectively. The ASSD values were 0.50, 1.63, 1.28, 0.26, and 0.27 mm, respectively. Comparing these results with other models revealed that the MDU‐Net model demonstrated the best performance in terms of the DSC values for the scalp, CSF, white matter, and gray matter. When compared with the H‐Dense U‐Net model, which showed the highest performance among the other models, the MDU‐Net model showed substantial improvements in the HD view, particularly in the gray matter region, with a difference of approximately 9%. In addition, in terms of the ASSD, the MDU‐Net model outperformed the H‐Dense U‐Net model, showing an approximately 7% improvements in the white matter and approximately 9% improvements in the gray matter. Conclusion Compared with existing models in terms of DSC, HD, and ASSD, the proposed MDU‐Net model demonstrated the best performance on average and showed its potential to enhance the accuracy of automatic segmentation for head MRI scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaqin@9909发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
星辰完成签到,获得积分10
1秒前
NK001完成签到,获得积分10
1秒前
缘起缘灭完成签到,获得积分10
2秒前
CipherSage应助萌道采纳,获得10
2秒前
2秒前
天衍四九完成签到,获得积分10
2秒前
北极熊不吃牙膏完成签到,获得积分10
3秒前
balmy完成签到 ,获得积分10
3秒前
3秒前
Mid发布了新的文献求助20
4秒前
4秒前
春夏秋冬发布了新的文献求助10
4秒前
古怪小枫给古怪小枫的求助进行了留言
4秒前
笨笨芯完成签到,获得积分20
5秒前
阿伟爱打球完成签到,获得积分10
5秒前
林上草应助潦草采纳,获得10
6秒前
6秒前
ding应助星星采纳,获得10
6秒前
摆烂王子发布了新的文献求助10
6秒前
小文完成签到,获得积分20
6秒前
Yimi完成签到,获得积分10
7秒前
小巧凝丹完成签到,获得积分10
7秒前
7秒前
8秒前
善良过客完成签到,获得积分10
8秒前
贪玩的宛凝完成签到,获得积分10
8秒前
9秒前
10秒前
倔强的大萝卜完成签到,获得积分0
10秒前
11秒前
11秒前
11秒前
12秒前
Ankangg完成签到,获得积分10
12秒前
啊啊啊完成签到 ,获得积分10
12秒前
aaaabc发布了新的文献求助20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759