Study of multistep Dense U‐Net‐based automatic segmentation for head MRI scans

计算机科学 分割 人工智能 磁共振成像 矢状面 卷积神经网络 模式识别(心理学) 核医学 计算机视觉 医学 放射科
作者
Yongha Gi,Geon Oh,Yunhui Jo,H. Lim,Yousun Ko,Jinyoung Hong,Eunjun Lee,Sangmin Park,Tae-Yeong Kwak,Sang-Cheol Kim,Myonggeun Yoon
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.16824
摘要

Abstract Background Despite extensive efforts to obtain accurate segmentation of magnetic resonance imaging (MRI) scans of a head, it remains challenging primarily due to variations in intensity distribution, which depend on the equipment and parameters used. Purpose The goal of this study is to evaluate the effectiveness of an automatic segmentation method for head MRI scans using a multistep Dense U‐Net (MDU‐Net) architecture. Methods The MDU‐Net‐based method comprises two steps. The first step is to segment the scalp, skull, and whole brain from head MRI scans using a convolutional neural network (CNN). In the first step, a hybrid network is used to combine 2.5D Dense U‐Net and 3D Dense U‐Net structure. This hybrid network acquires logits in three orthogonal planes (axial, coronal, and sagittal) using 2.5D Dense U‐Nets and fuses them by averaging. The resultant fused probability map with head MRI scans then serves as the input to a 3D Dense U‐Net. In this process, different ratios of active contour loss and focal loss are applied. The second step is to segment the cerebrospinal fluid (CSF), white matter, and gray matter from extracted brain MRI scans using CNNs. In the second step, the histogram of the extracted brain MRI scans is standardized and then a 2.5D Dense U‐Net is used to further segment the brain's specific tissues using the focal loss. A dataset of 100 head MRI scans from an OASIS‐3 dataset was used for training, internal validation, and testing, with ratios of 80%, 10%, and 10%, respectively. Using the proposed approach, we segmented the head MRI scans into five areas (scalp, skull, CSF, white matter, and gray matter) and evaluated the segmentation results using the Dice similarity coefficient (DSC) score, Hausdorff distance (HD), and the average symmetric surface distance (ASSD) as evaluation metrics. We compared these results with those obtained using the Res‐U‐Net, Dense U‐Net, U‐Net++, Swin‐Unet, and H‐Dense U‐Net models. Results The MDU‐Net model showed DSC values of 0.933, 0.830, 0.833, 0.953, and 0.917 in the scalp, skull, CSF, white matter, and gray matter, respectively. The corresponding HD values were 2.37, 2.89, 2.13, 1.52, and 1.53 mm, respectively. The ASSD values were 0.50, 1.63, 1.28, 0.26, and 0.27 mm, respectively. Comparing these results with other models revealed that the MDU‐Net model demonstrated the best performance in terms of the DSC values for the scalp, CSF, white matter, and gray matter. When compared with the H‐Dense U‐Net model, which showed the highest performance among the other models, the MDU‐Net model showed substantial improvements in the HD view, particularly in the gray matter region, with a difference of approximately 9%. In addition, in terms of the ASSD, the MDU‐Net model outperformed the H‐Dense U‐Net model, showing an approximately 7% improvements in the white matter and approximately 9% improvements in the gray matter. Conclusion Compared with existing models in terms of DSC, HD, and ASSD, the proposed MDU‐Net model demonstrated the best performance on average and showed its potential to enhance the accuracy of automatic segmentation for head MRI scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiaobaqiao完成签到 ,获得积分10
1秒前
Din完成签到 ,获得积分10
36秒前
zuhangzhao完成签到 ,获得积分10
45秒前
名侦探柯基完成签到 ,获得积分10
47秒前
幽默大象完成签到 ,获得积分10
1分钟前
l老王完成签到 ,获得积分10
1分钟前
等风来1234完成签到,获得积分10
1分钟前
高兴寒梦完成签到 ,获得积分10
1分钟前
一枝完成签到 ,获得积分10
1分钟前
所得皆所愿完成签到 ,获得积分10
1分钟前
没用的三轮完成签到,获得积分10
1分钟前
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
雷九万班完成签到 ,获得积分10
1分钟前
不知道完成签到,获得积分10
1分钟前
Augusterny完成签到 ,获得积分10
2分钟前
Feng5945完成签到 ,获得积分10
2分钟前
cfsyyfujia完成签到 ,获得积分10
2分钟前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
2分钟前
淡淡醉波wuliao完成签到 ,获得积分10
2分钟前
xixi很困完成签到 ,获得积分10
3分钟前
愉快的冰萍完成签到 ,获得积分10
3分钟前
在水一方应助激情的含巧采纳,获得10
3分钟前
isedu完成签到,获得积分10
3分钟前
Singularity应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
风中一叶完成签到 ,获得积分10
4分钟前
Shrimp完成签到 ,获得积分10
4分钟前
4分钟前
安静严青完成签到 ,获得积分10
4分钟前
绿色心情完成签到 ,获得积分10
4分钟前
开朗白开水完成签到 ,获得积分10
4分钟前
激情的含巧完成签到,获得积分10
4分钟前
你好纠结伦完成签到,获得积分10
4分钟前
4分钟前
zjq完成签到 ,获得积分10
4分钟前
好名字完成签到,获得积分10
4分钟前
zhangruixue0519完成签到 ,获得积分10
4分钟前
logolush完成签到 ,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010