亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HDSS-Net: A Novel Hierarchically Designed Network With Spherical Space Classifier for Ship Recognition in SAR Images

计算机科学 分类器(UML) 人工智能 合成孔径雷达 遥感 网(多面体) 模式识别(心理学) 计算机视觉 地质学 数学 几何学
作者
Yuanzhe Shang,Wei Pu,Congwen Wu,Danling Liao,Xiaowo Xu,Chenwei Wang,Yulin Huang,Yin Zhang,Junjie Wu,Jianyu Yang,Jianqi Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-20 被引量:10
标识
DOI:10.1109/tgrs.2023.3332137
摘要

Ship recognition in synthetic aperture radar (SAR) images is essential for many applications in maritime surveillance tasks. Recently, convolutional neural network (CNN)-based methods tend to be the mainstream in SAR recognition. Though considerable developments have been achieved, there are still several challenging issues toward superior ship recognition performance: 1) Ships have a large variance in size, making it difficult to recognize ships by using a single scale features of CNN. 2) The SAR ship's large aspect ratio presents an obvious geometric characteristic. However, standard convolution is limited by the fixed convolution kernel, which is less effective in processing elongated SAR ships. 3) Existing CNN classifiers with softmax loss are less powerful to deal with intraclass diversity and interclass similarity in SAR ships. In this paper, we propose a task-specific hierarchically designed network with a spherical space classifier (HDSS-Net) to alleviate the above issues. Firstly, to realize SAR ship recognition with large size variation, a feature aggregation module (FAM) is designed for obtaining a feature pyramid that has strong representational power at all scales. Secondly, a FeatureBoost module (FBM) is devised to provide rectangular receptive fields to refine the features generated by FAM. Finally, a novel spherical space classifier (SSC) is proposed to expand the interclass margin and compress the intraclass feature distribution by fully taking advantage of the property of spherical space. The experimental results on two benchmark datasets (OpenSARShip and FUSAR-Ship) jointly show that the proposed HDSS-Net performs better than classic CNN methods and novel SAR ship recognition CNN methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhuxiaoyue发布了新的文献求助10
刚刚
打打应助辉辉采纳,获得10
刚刚
美美完成签到,获得积分20
2秒前
5秒前
7秒前
9秒前
BeanHahn发布了新的文献求助10
9秒前
10秒前
阿离完成签到,获得积分10
11秒前
13秒前
无题完成签到,获得积分10
13秒前
辉辉发布了新的文献求助10
14秒前
16秒前
17秒前
19秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
21秒前
22秒前
chenyue233完成签到,获得积分10
22秒前
specium发布了新的文献求助10
24秒前
chenyue233发布了新的文献求助10
28秒前
大个应助ECD采纳,获得10
29秒前
30秒前
35秒前
BeanHahn完成签到,获得积分10
38秒前
_u_ii发布了新的文献求助10
39秒前
辉辉完成签到,获得积分10
39秒前
41秒前
Orange应助Eris采纳,获得10
42秒前
45秒前
zcr完成签到,获得积分10
46秒前
久等雨归完成签到,获得积分10
48秒前
49秒前
53秒前
今后应助白晔采纳,获得10
53秒前
57秒前
善学以致用应助ppg123采纳,获得10
58秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671