计算机科学
分类器(UML)
人工智能
合成孔径雷达
遥感
网(多面体)
模式识别(心理学)
计算机视觉
地质学
数学
几何学
作者
Yuanzhe Shang,Wei Pu,Congwen Wu,Danling Liao,Xiaowo Xu,Chenwei Wang,Yulin Huang,Yin Zhang,Junjie Wu,Jianyu Yang,Jianqi Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:61: 1-20
被引量:10
标识
DOI:10.1109/tgrs.2023.3332137
摘要
Ship recognition in synthetic aperture radar (SAR) images is essential for many applications in maritime surveillance tasks. Recently, convolutional neural network (CNN)-based methods tend to be the mainstream in SAR recognition. Though considerable developments have been achieved, there are still several challenging issues toward superior ship recognition performance: 1) Ships have a large variance in size, making it difficult to recognize ships by using a single scale features of CNN. 2) The SAR ship's large aspect ratio presents an obvious geometric characteristic. However, standard convolution is limited by the fixed convolution kernel, which is less effective in processing elongated SAR ships. 3) Existing CNN classifiers with softmax loss are less powerful to deal with intraclass diversity and interclass similarity in SAR ships. In this paper, we propose a task-specific hierarchically designed network with a spherical space classifier (HDSS-Net) to alleviate the above issues. Firstly, to realize SAR ship recognition with large size variation, a feature aggregation module (FAM) is designed for obtaining a feature pyramid that has strong representational power at all scales. Secondly, a FeatureBoost module (FBM) is devised to provide rectangular receptive fields to refine the features generated by FAM. Finally, a novel spherical space classifier (SSC) is proposed to expand the interclass margin and compress the intraclass feature distribution by fully taking advantage of the property of spherical space. The experimental results on two benchmark datasets (OpenSARShip and FUSAR-Ship) jointly show that the proposed HDSS-Net performs better than classic CNN methods and novel SAR ship recognition CNN methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI