HDSS-Net: A Novel Hierarchically Designed Network With Spherical Space Classifier for Ship Recognition in SAR Images

计算机科学 分类器(UML) 人工智能 合成孔径雷达 遥感 网(多面体) 模式识别(心理学) 计算机视觉 地质学 数学 几何学
作者
Yuanzhe Shang,Wei Pu,Congwen Wu,Danling Liao,Xiaowo Xu,Chenwei Wang,Yulin Huang,Yin Zhang,Junjie Wu,Jianyu Yang,Jianqi Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-20 被引量:10
标识
DOI:10.1109/tgrs.2023.3332137
摘要

Ship recognition in synthetic aperture radar (SAR) images is essential for many applications in maritime surveillance tasks. Recently, convolutional neural network (CNN)-based methods tend to be the mainstream in SAR recognition. Though considerable developments have been achieved, there are still several challenging issues toward superior ship recognition performance: 1) Ships have a large variance in size, making it difficult to recognize ships by using a single scale features of CNN. 2) The SAR ship's large aspect ratio presents an obvious geometric characteristic. However, standard convolution is limited by the fixed convolution kernel, which is less effective in processing elongated SAR ships. 3) Existing CNN classifiers with softmax loss are less powerful to deal with intraclass diversity and interclass similarity in SAR ships. In this paper, we propose a task-specific hierarchically designed network with a spherical space classifier (HDSS-Net) to alleviate the above issues. Firstly, to realize SAR ship recognition with large size variation, a feature aggregation module (FAM) is designed for obtaining a feature pyramid that has strong representational power at all scales. Secondly, a FeatureBoost module (FBM) is devised to provide rectangular receptive fields to refine the features generated by FAM. Finally, a novel spherical space classifier (SSC) is proposed to expand the interclass margin and compress the intraclass feature distribution by fully taking advantage of the property of spherical space. The experimental results on two benchmark datasets (OpenSARShip and FUSAR-Ship) jointly show that the proposed HDSS-Net performs better than classic CNN methods and novel SAR ship recognition CNN methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助彩色的过客采纳,获得10
1秒前
1秒前
1秒前
lyp发布了新的文献求助10
2秒前
逗逗完成签到,获得积分10
3秒前
熊小子爱学习完成签到,获得积分10
3秒前
jack应助可以采纳,获得10
4秒前
4秒前
可靠的难胜完成签到,获得积分10
4秒前
充电宝应助震动的强炫采纳,获得10
4秒前
ALDRC完成签到,获得积分10
5秒前
5秒前
开局发布了新的文献求助10
5秒前
陈_完成签到,获得积分10
6秒前
深情海秋完成签到,获得积分10
6秒前
7秒前
星辰大海应助Sthwrong采纳,获得10
7秒前
wang发布了新的文献求助10
8秒前
付小蓉发布了新的文献求助30
8秒前
飘逸果汁完成签到,获得积分10
8秒前
聪明煎蛋完成签到,获得积分10
9秒前
9秒前
852应助陳某采纳,获得30
10秒前
坚强的翠霜完成签到,获得积分10
10秒前
10秒前
震动的强炫完成签到,获得积分10
11秒前
11秒前
神外第一刀完成签到 ,获得积分10
11秒前
11秒前
11秒前
CCY发布了新的文献求助10
12秒前
林药师发布了新的文献求助10
12秒前
13秒前
一手灵魂完成签到,获得积分10
13秒前
13秒前
ThomasZ完成签到,获得积分10
13秒前
jhih完成签到,获得积分10
13秒前
王士钰完成签到,获得积分10
13秒前
毛毛完成签到,获得积分10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904