已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HDSS-Net: A Novel Hierarchically Designed Network With Spherical Space Classifier for Ship Recognition in SAR Images

计算机科学 分类器(UML) 人工智能 合成孔径雷达 遥感 网(多面体) 模式识别(心理学) 计算机视觉 地质学 数学 几何学
作者
Yuanzhe Shang,Wei Pu,Congwen Wu,Danling Liao,Xiaowo Xu,Chenwei Wang,Yulin Huang,Yin Zhang,Junjie Wu,Jianyu Yang,Jianqi Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-20 被引量:35
标识
DOI:10.1109/tgrs.2023.3332137
摘要

Ship recognition in synthetic aperture radar (SAR) images is essential for many applications in maritime surveillance tasks. Recently, convolutional neural network (CNN)-based methods tend to be the mainstream in SAR recognition. Though considerable developments have been achieved, there are still several challenging issues toward superior ship recognition performance: 1) Ships have a large variance in size, making it difficult to recognize ships by using a single scale features of CNN. 2) The SAR ship's large aspect ratio presents an obvious geometric characteristic. However, standard convolution is limited by the fixed convolution kernel, which is less effective in processing elongated SAR ships. 3) Existing CNN classifiers with softmax loss are less powerful to deal with intraclass diversity and interclass similarity in SAR ships. In this paper, we propose a task-specific hierarchically designed network with a spherical space classifier (HDSS-Net) to alleviate the above issues. Firstly, to realize SAR ship recognition with large size variation, a feature aggregation module (FAM) is designed for obtaining a feature pyramid that has strong representational power at all scales. Secondly, a FeatureBoost module (FBM) is devised to provide rectangular receptive fields to refine the features generated by FAM. Finally, a novel spherical space classifier (SSC) is proposed to expand the interclass margin and compress the intraclass feature distribution by fully taking advantage of the property of spherical space. The experimental results on two benchmark datasets (OpenSARShip and FUSAR-Ship) jointly show that the proposed HDSS-Net performs better than classic CNN methods and novel SAR ship recognition CNN methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助晴空万里采纳,获得10
1秒前
2秒前
wlf发布了新的文献求助30
2秒前
Wang完成签到 ,获得积分10
3秒前
Cooper应助干净巧荷采纳,获得10
5秒前
天天呼的海角完成签到,获得积分10
5秒前
6秒前
9秒前
9秒前
陈咪咪完成签到 ,获得积分10
10秒前
Orange应助cjlinhunu采纳,获得10
10秒前
JeromineJade发布了新的文献求助10
12秒前
酸海椒发布了新的文献求助10
13秒前
Lee发布了新的文献求助10
14秒前
14秒前
情怀应助JaneChen采纳,获得30
15秒前
潇洒的觅柔完成签到,获得积分10
16秒前
Mic应助舒服的水壶采纳,获得10
17秒前
嘻嘻发布了新的文献求助10
18秒前
18秒前
18秒前
微风完成签到 ,获得积分10
18秒前
19秒前
21秒前
ww417发布了新的文献求助10
22秒前
22秒前
22秒前
科研通AI6.1应助gndd采纳,获得30
23秒前
斯文败类应助诚心文博采纳,获得10
24秒前
皮代谷发布了新的文献求助10
24秒前
24秒前
25秒前
456244yyy发布了新的文献求助10
27秒前
大模型应助攀登采纳,获得30
27秒前
cjlinhunu发布了新的文献求助10
30秒前
NexusExplorer应助wsw111采纳,获得10
30秒前
30秒前
30秒前
JaneChen发布了新的文献求助30
31秒前
田様应助皮代谷采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771671
求助须知:如何正确求助?哪些是违规求助? 5593024
关于积分的说明 15428138
捐赠科研通 4904964
什么是DOI,文献DOI怎么找? 2639092
邀请新用户注册赠送积分活动 1586960
关于科研通互助平台的介绍 1541911