重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

HDSS-Net: A Novel Hierarchically Designed Network With Spherical Space Classifier for Ship Recognition in SAR Images

计算机科学 分类器(UML) 人工智能 合成孔径雷达 遥感 网(多面体) 模式识别(心理学) 计算机视觉 地质学 数学 几何学
作者
Yuanzhe Shang,Wei Pu,Congwen Wu,Danling Liao,Xiaowo Xu,Chenwei Wang,Yulin Huang,Yin Zhang,Junjie Wu,Jianyu Yang,Jianqi Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-20 被引量:10
标识
DOI:10.1109/tgrs.2023.3332137
摘要

Ship recognition in synthetic aperture radar (SAR) images is essential for many applications in maritime surveillance tasks. Recently, convolutional neural network (CNN)-based methods tend to be the mainstream in SAR recognition. Though considerable developments have been achieved, there are still several challenging issues toward superior ship recognition performance: 1) Ships have a large variance in size, making it difficult to recognize ships by using a single scale features of CNN. 2) The SAR ship's large aspect ratio presents an obvious geometric characteristic. However, standard convolution is limited by the fixed convolution kernel, which is less effective in processing elongated SAR ships. 3) Existing CNN classifiers with softmax loss are less powerful to deal with intraclass diversity and interclass similarity in SAR ships. In this paper, we propose a task-specific hierarchically designed network with a spherical space classifier (HDSS-Net) to alleviate the above issues. Firstly, to realize SAR ship recognition with large size variation, a feature aggregation module (FAM) is designed for obtaining a feature pyramid that has strong representational power at all scales. Secondly, a FeatureBoost module (FBM) is devised to provide rectangular receptive fields to refine the features generated by FAM. Finally, a novel spherical space classifier (SSC) is proposed to expand the interclass margin and compress the intraclass feature distribution by fully taking advantage of the property of spherical space. The experimental results on two benchmark datasets (OpenSARShip and FUSAR-Ship) jointly show that the proposed HDSS-Net performs better than classic CNN methods and novel SAR ship recognition CNN methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠雨发布了新的文献求助10
刚刚
win发布了新的文献求助10
刚刚
虚心碧发布了新的文献求助10
1秒前
科研通AI6应助LYNN采纳,获得10
1秒前
可爱的函函应助yyy采纳,获得10
1秒前
11关闭了11文献求助
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
浮游应助FLZLC采纳,获得10
3秒前
3秒前
lllllllulu发布了新的文献求助10
3秒前
科研通AI6应助ghjyufh采纳,获得10
4秒前
Owen应助wwwwww采纳,获得10
4秒前
yzzzz完成签到,获得积分10
4秒前
micett完成签到,获得积分10
5秒前
玛卡完成签到 ,获得积分10
5秒前
梁小白发布了新的文献求助10
5秒前
MIN发布了新的文献求助10
5秒前
杨诗婕完成签到 ,获得积分10
6秒前
英吉利25发布了新的文献求助20
6秒前
科研小白发布了新的文献求助10
6秒前
Lsm13141516完成签到,获得积分10
6秒前
guy发布了新的文献求助10
7秒前
7秒前
英俊的铭应助kkkuuu采纳,获得10
7秒前
Gnefhl发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
情怀应助阿玉采纳,获得10
9秒前
聪明帅哥完成签到,获得积分10
9秒前
9秒前
9秒前
小张早点睡完成签到,获得积分10
10秒前
LYNN完成签到,获得积分10
10秒前
侧耳倾听发布了新的文献求助10
10秒前
可乐完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654