生物
采后
生物病虫害防治
杀菌剂
食物腐败
酵母
生物技术
细菌
生态学
植物
遗传学
作者
Bilal Ağırman,Erdem Çarşanba,Luca Settanni,Hüseyin Erten
出处
期刊:Yeast
[Wiley]
日期:2023-08-31
卷期号:40 (10): 457-475
被引量:10
摘要
Fresh fruits and vegetables are susceptible to a large variety of spoilage agents before and after harvest. Among these, fungi are mostly responsible for the microbiological deteriorations that lead to economically significant losses of fresh produce. Today, synthetic fungicides represent the first approach for controlling postharvest spoilage in fruits and vegetables worldwide. However, the emergence of fungicide-resistant pathogen biotypes and the increasing awareness of consumers toward the health implications of hazardous chemicals imposed an urgent need to reduce the use of synthetic fungicides in the food supply; this phenomenon strengthened the search for alternative biocontrol strategies that are more effective, safer, nontoxic, low-residue, environment friendly, and cost-effective. In the last decade, biocontrol with antagonistic yeasts became a promising strategy to reduce chemical compounds during fruit and vegetable postharvest, and several yeast-based biocontrol products have been commercialized. Biocontrol is a multipartite system that includes different microbial groups (spoilage mold, yeast, bacteria, and nonspoilage resident microorganisms), host fruit, vegetables, or plants, and the environment. The majority of biocontrol studies focused on yeast-mold mechanisms, with little consideration for yeast-bacteria and yeast-yeast interactions. The current review focused mainly on the unexplored yeast-based interactions and the mechanisms of actions in biocontrol systems as well as on the importance and advantages of using yeasts as biocontrol agents, improving antagonist efficiency, the commercialization process and associated challenges, and future perspectives.
科研通智能强力驱动
Strongly Powered by AbleSci AI