作者
Sanghee Han,Sung-Lyul Lim,Hail Kim,Hyun Jin Choi,Min Young Lee,Sun-Yup Shim,Duc Dat Le,In Jin Ha,Mina Lee,Seok‐Geun Lee
摘要
Colorectal cancer (CRC) remains a significant global health concern, and targeting inflammation has emerged as a promising approach for its prevention and treatment. Medicinal plants and phytochemicals have garnered attention for their potential efficacy against inflammation with minimal toxicity. Osmanthus fragrans var. aurantiacus Makino (O. fragrans) has a history of traditional use in Korea and China in treating various inflammation-related conditions, but its potential use for CRC has not been uncovered. This study aims to explore the potential anti-proliferative and pro-apoptotic properties of O. fragrans, focusing on its impact on CRC treatment. By investigating O. fragrans, we aim to uncover its anti-proliferative and apoptotic effects in human CRC cells, potentially paving the way for effective and well-tolerated therapeutic strategies for CRC patients. Ethanol (EtOH) extracts of O. fragrans leaf and flower, along with specific fractions (n-hexane, ethyl acetate (EtOAc), n-butanol, and the aqueous residue) were evaluated for their anti-proliferative effects in human CRC cells using MTT assays, and compared to normal colon cells. Mechanistic insights and chemical profiling were obtained through flow cytometry, colorimetric assays, western blotting, and molecular docking, and high-performance liquid chromatography (HPLC) system. Both flower and leaf EtOH extracts of O. fragrans exhibited significant anti-proliferative effects in human CRC cells, with the leaf extract demonstrating higher potency. The EtOAc fraction from the leaf extract displayed the strongest anti-CRC cell proliferative effects while no cytotoxic effects in normal colon cells. Chemical profiling of these fractions identified triterpenoids as significant components in the EtOAc fractions. The leaf EtOAc fraction caused cell cycle arrest and apoptosis, accompanied by elevating intracellular reactive oxygen species and mitochondrial dysfunction in CRC cells. Additionally, it inhibited NF-κB and ERK1/2 signaling, leading to reduced COX2 expression. Notably, two triterpenoids isolated from the leaf EtOAc fraction, maslinic acid and corosolic acid, displayed potent anti-cancer activity in CRC cells without affecting normal colon cells. Corosolic acid exhibited a strong binding affinity to COX2 and reduced its expression, supporting its role in the anti-inflammatory and anti-cancer effects. Our findings suggest that O. fragrans, particularly its triterpenoid-rich EtOAc fraction, holds promise as a novel therapeutic agent for CRC prevention and therapy. These results provide valuable insights into the potential application of O. fragrans and its bioactive compounds in combating CRC.