Association between oral microbiome and seven types of cancers in East Asian population: a two-sample Mendelian randomization analysis

孟德尔随机化 全基因组关联研究 微生物群 生物 人口 单核苷酸多态性 癌症 肿瘤科 医学 生物信息学 遗传学 基因型 基因 环境卫生 遗传变异
作者
Kexin Feng,Fei Ren,Xiang Wang
出处
期刊:Frontiers in Molecular Biosciences [Frontiers Media SA]
卷期号:10 被引量:5
标识
DOI:10.3389/fmolb.2023.1327893
摘要

Background: The oral microbiome has been intricately linked to various pathological conditions, notably cancer, though clear causal links remain elusive. This study aimed to investigate the potential causal relationships between the oral microbiome and seven major cancers: breast, lung, pancreatic, colorectal, gastric, ovarian, and prostate cancers, leveraging Mendelian randomization (MR). Methods: A two-sample MR analysis was conducted using genome-wide association study (GWAS) data specific to oral microbiota in individuals of East Asian descent. Single nucleotide polymorphisms (SNPs) independent of confounders served as instrumental variables (IVs) to deduce causality. MR methodologies such as the inverse variance weighted (IVW) method, weighted median (WM) method, and Mendelian randomization-Egger (MR-Egger) method were employed. The study utilized datasets encapsulating a multitude of cancer cases and controls, focusing on Asian populations. Results: Our analysis revealed intricate associations between specific bacterial genera of the oral microbiome and diverse cancers. Notably, Fusobacterium showed mixed associations with various cancers, while genera like Prevotella and Streptococcus exhibited nuanced roles across malignancies. The genus Aggregatibacter demonstrated a multifaceted influence, positively correlating with some cancers while inhibiting others. Conclusion: Our findings underscore the profound implications of the oral microbiome in systemic malignancies, suggesting potential modulatory roles in cancer etiology. These insights, though preliminary, accentuate the need for deeper exploration and could pave the way for novel therapeutic strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助2hi采纳,获得10
刚刚
刚刚
邓巧完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6.1应助Ice_zhao采纳,获得10
1秒前
1秒前
HH发布了新的文献求助10
1秒前
GIGGLE完成签到,获得积分20
1秒前
客厅狂欢完成签到,获得积分10
2秒前
zhang7jing发布了新的文献求助30
2秒前
田様应助坦率导师sw采纳,获得10
3秒前
Z先生发布了新的文献求助10
3秒前
英姑应助潇洒闭月采纳,获得10
5秒前
无花果应助lihailong采纳,获得10
5秒前
李佳笑完成签到,获得积分10
5秒前
小白加油发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
smottom应助LLJ采纳,获得10
8秒前
8秒前
likun_42完成签到,获得积分10
9秒前
9秒前
丘比特应助发sci的女人采纳,获得10
9秒前
上山打老虎完成签到,获得积分10
9秒前
小郭完成签到,获得积分10
10秒前
积极慕晴完成签到,获得积分10
11秒前
HH完成签到,获得积分20
12秒前
12秒前
12秒前
我是老大应助滴滴滴采纳,获得10
13秒前
leo0531完成签到 ,获得积分10
13秒前
杨文志发布了新的文献求助10
13秒前
ljy1111完成签到,获得积分10
13秒前
情怀应助Z1xq2K采纳,获得10
14秒前
Cyuan完成签到,获得积分10
14秒前
酷波er应助js采纳,获得10
15秒前
儒飞完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082