Deep Learning and Text Mining: Classifying and Extracting Key Information from Construction Accident Narratives

计算机科学 事故(哲学) 钥匙(锁) 卷积神经网络 人工智能 自然语言处理 机器学习 情报检索 计算机安全 哲学 认识论
作者
Jue Li,Chin-Hsien Wu
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (19): 10599-10599 被引量:4
标识
DOI:10.3390/app131910599
摘要

Construction accidents can lead to serious consequences. To reduce the occurrence of such accidents and strengthen the execution capabilities in on-site safety management, managers must analyze accident report texts in depth and extract valuable information from them. However, accident report texts are usually presented in unstructured or semi-structured forms; analyzing these texts manually requires a lot of time and effort, it is difficult to cope with the demand of analyzing a large number of accident texts, and the quality of key information extracted manually may be poor. Therefore, this study proposes a classification method based on natural language processing (NLP) technology. First, we developed a text classification model based on a convolutional neural network (CNN) that can automatically classify accident categories based on accident text features. Next, taking the classified fall accidents as an example, we extracted key information from accident narratives using the term frequency-inverse document frequency (TF-IDF) method and presented it visually using word clouds. The results show that the overall accuracy of the CNN model reaches 84%, which is better than the other three shallow machine-learning models. Then, eight key accident areas and three accident-prone operations were identified using the TF-IDF algorithm. This study can provide important guidance for project managers and can be used for on-site safety management to help prevent production safety accidents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫麦片完成签到,获得积分10
刚刚
刚刚
2秒前
2秒前
梓歆发布了新的文献求助10
3秒前
4秒前
liang_zai发布了新的文献求助10
6秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
魁梧的路灯完成签到,获得积分10
8秒前
乐乐应助jon158采纳,获得10
9秒前
9秒前
wanci应助阔达的棒棒糖采纳,获得10
9秒前
量子星尘发布了新的文献求助50
10秒前
意忆发布了新的文献求助10
12秒前
12秒前
无可匹敌的饭量完成签到,获得积分10
12秒前
丘比特应助无辜的晓露采纳,获得10
12秒前
阔达的棒棒糖完成签到,获得积分10
14秒前
14秒前
qww关闭了qww文献求助
14秒前
zhiweiyan发布了新的文献求助10
16秒前
WYB完成签到 ,获得积分10
19秒前
19秒前
斯文败类应助lory采纳,获得10
20秒前
20秒前
8848完成签到,获得积分10
22秒前
23秒前
梓歆发布了新的文献求助30
24秒前
华仔应助吉鞅采纳,获得10
24秒前
汉堡包应助好像是肥阳采纳,获得10
26秒前
李健应助Literaturecome采纳,获得30
27秒前
健忘的柠檬完成签到,获得积分10
27秒前
zoes发布了新的文献求助10
30秒前
积极凌兰完成签到 ,获得积分10
33秒前
FashionBoy应助yanyan123采纳,获得10
33秒前
34秒前
35秒前
华仔应助肖旻采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799404
求助须知:如何正确求助?哪些是违规求助? 5799557
关于积分的说明 15499913
捐赠科研通 4925819
什么是DOI,文献DOI怎么找? 2651671
邀请新用户注册赠送积分活动 1598708
关于科研通互助平台的介绍 1553594