A digital twin to quantitatively understand aging mechanisms coupled effects of NMC battery using dynamic aging profiles

电池(电) 材料科学 阳极 锂离子电池 降级(电信) 锂(药物) 淡出 计算机科学 电信 内分泌学 物理化学 功率(物理) 化学 物理 操作系统 医学 量子力学 电极
作者
Wendi Guo,Yaqi Li,Zhongchao Sun,Søren Byg Vilsen,Daniel‐Ioan Stroe
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:63: 102965-102965 被引量:6
标识
DOI:10.1016/j.ensm.2023.102965
摘要

Traditional lithium-ion battery modeling does not provide sufficient information to accurately verify battery performance under real-time dynamic operating conditions, particularly when considering various aging modes and mechanisms. To improve the current methods, this paper proposes a lithium-ion battery digital twin that can capture real-time data and integrate the strong coupling between SEI layer growth, anode crack propagation, and lithium plating. It can be utilized to estimate aging behavior from macroscopic full-cell level to microscopic particle level, including voltage-current profiles in dynamic aging conditions, predict the degradation behavior of Nickel-Manganese-Cobalt-Oxide (NMC)-based lithium-ion batteries, and assist in electrochemical analysis. This model can improve the root cause analysis of cell aging, enabling a quantitative understanding of aging mechanism coupled effects. Three charging protocols with dynamic discharging profiles are developed to simulate real vehicle operation scenarios and used to validate the digital twin, combining operando impedance measurements, post-mortem analysis, and SEM to further prove the conclusions. The digital twin can accurately predict battery capacity fade within 0.4% MAE. The results indicate that SEI layer growth is the primary contributor to capacity degradation and resistance increase. Based on the analysis of the model, it is concluded that one of the proposed multi-step charging protocols, in comparison to a standard continuous charging protocol, can reduce the degradation of NMC-based lithium-ion batteries. This paper represents a firm physical foundation for future physics-informed machine learning development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rebecca完成签到,获得积分10
刚刚
刚刚
1秒前
Mlwwq发布了新的文献求助10
1秒前
领导范儿应助长情洙采纳,获得10
1秒前
洋洋完成签到,获得积分20
2秒前
Owen应助WY采纳,获得30
2秒前
2秒前
listener完成签到,获得积分10
3秒前
3秒前
3秒前
调研昵称发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助默默海露采纳,获得10
4秒前
彭于晏应助宝贝采纳,获得10
4秒前
金晶发布了新的文献求助10
5秒前
5秒前
Peter完成签到,获得积分20
5秒前
丰知然应助zhengke924采纳,获得10
5秒前
飘逸晓博完成签到 ,获得积分20
6秒前
coco完成签到 ,获得积分10
6秒前
科研菜鸟发布了新的文献求助10
6秒前
6秒前
大气的乌冬面完成签到,获得积分10
6秒前
6秒前
RUSTY完成签到,获得积分20
6秒前
田様应助11采纳,获得10
7秒前
7秒前
7秒前
7秒前
芝士完成签到,获得积分10
7秒前
pqy发布了新的文献求助10
7秒前
脆脆鲨完成签到,获得积分10
8秒前
8秒前
文安完成签到,获得积分10
8秒前
微笑如冰完成签到,获得积分10
9秒前
luo给luo的求助进行了留言
9秒前
晨曦发布了新的文献求助10
9秒前
9秒前
大方小白发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762