清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A digital twin to quantitatively understand aging mechanisms coupled effects of NMC battery using dynamic aging profiles

电池(电) 材料科学 阳极 锂离子电池 降级(电信) 锂(药物) 淡出 计算机科学 电信 内分泌学 物理化学 功率(物理) 化学 物理 操作系统 医学 量子力学 电极
作者
Wendi Guo,Yaqi Li,Zhongchao Sun,Søren Byg Vilsen,Daniel‐Ioan Stroe
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:63: 102965-102965 被引量:6
标识
DOI:10.1016/j.ensm.2023.102965
摘要

Traditional lithium-ion battery modeling does not provide sufficient information to accurately verify battery performance under real-time dynamic operating conditions, particularly when considering various aging modes and mechanisms. To improve the current methods, this paper proposes a lithium-ion battery digital twin that can capture real-time data and integrate the strong coupling between SEI layer growth, anode crack propagation, and lithium plating. It can be utilized to estimate aging behavior from macroscopic full-cell level to microscopic particle level, including voltage-current profiles in dynamic aging conditions, predict the degradation behavior of Nickel-Manganese-Cobalt-Oxide (NMC)-based lithium-ion batteries, and assist in electrochemical analysis. This model can improve the root cause analysis of cell aging, enabling a quantitative understanding of aging mechanism coupled effects. Three charging protocols with dynamic discharging profiles are developed to simulate real vehicle operation scenarios and used to validate the digital twin, combining operando impedance measurements, post-mortem analysis, and SEM to further prove the conclusions. The digital twin can accurately predict battery capacity fade within 0.4% MAE. The results indicate that SEI layer growth is the primary contributor to capacity degradation and resistance increase. Based on the analysis of the model, it is concluded that one of the proposed multi-step charging protocols, in comparison to a standard continuous charging protocol, can reduce the degradation of NMC-based lithium-ion batteries. This paper represents a firm physical foundation for future physics-informed machine learning development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
29秒前
54秒前
1分钟前
十二完成签到 ,获得积分10
1分钟前
1分钟前
Airi发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Ava应助Airi采纳,获得10
2分钟前
Tiger发布了新的文献求助10
2分钟前
Tiger完成签到,获得积分10
2分钟前
2分钟前
imi完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
Raunio完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
得咎发布了新的文献求助10
4分钟前
4分钟前
研友_8Y26PL完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
oscar完成签到,获得积分10
5分钟前
6分钟前
肆肆完成签到,获得积分10
6分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795355
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176