Discriminating minimal residual disease status in multiple myeloma based on MRI: utility of radiomics and comparison of machine-learning methods

医学 单变量 逻辑回归 支持向量机 队列 磁共振成像 无线电技术 机器学习 人工智能 单变量分析 多发性骨髓瘤 放射科 核医学 多元分析 内科学 多元统计 计算机科学
作者
Xiaoli Xiong,Qingqing Zhu,Zhiyong Zhou,Xiaojun Qian,Hong Rao,Yong Dai,C. Hu
出处
期刊:Clinical Radiology [Elsevier]
卷期号:78 (11): e839-e846 被引量:1
标识
DOI:10.1016/j.crad.2023.07.011
摘要

To explore the possibility of discriminating minimal residual disease (MRD) status in multiple myeloma (MM) based on magnetic resonance imaging (MRI) and identify optimal machine-learning methods to optimise the clinical treatment regimen.A total of 83 patients were analysed retrospectively. They were divided randomly into training and validation cohorts. The regions of interest were segmented and radiomics features were extracted and analysed on two sequences, including T1-weighted imaging (WI) and fat saturated (FS)-T2WI, and then radiomics models were built in the training cohort and evaluated in the validation cohort. Clinical characteristics were calculated to build a traditional model. A combined model was also built using the clinical characteristics and radiomics features. Classification accuracy was assessed using area under the curve (AUC) and F1 score.In the training cohort, only the bone marrow (BM) infiltrate ratio (p=0.005) was retained after univariate and multivariable logistic regression analysis. In T1WI, the linear support vector machine (SVM) achieved the best performance compared to other classifiers, with AUCs of 0.811 and 0.708 and F1 scores of 0.792 and 0.696 in the training and validation cohorts, respectively. Similarly, in FS-T2WI sequence, linear SVM achieved the best performance with AUCs of 0.833 and 0.800 and F1 score of 0.833 and 0.800. The combined model constructed by the FS-T2WI-linear SVM and BM infiltrate ratio outperformed the traditional model (p=0.050 and 0.012, Delong test), but showed no significant difference compared with the radiomics model (p=0.798 and 0.855).The linear SVM-based machine-learning method can offer a non-invasive tool for discriminating MRD status in MM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
lilian发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
qiuling发布了新的文献求助30
5秒前
Wong完成签到,获得积分20
7秒前
硕硕274完成签到,获得积分10
8秒前
mmccc1发布了新的文献求助10
8秒前
renpp822发布了新的文献求助30
8秒前
晏晏发布了新的文献求助10
9秒前
SaintLee发布了新的文献求助10
9秒前
小马发布了新的文献求助10
11秒前
11秒前
周宇飞完成签到 ,获得积分10
12秒前
14秒前
vv发布了新的文献求助10
14秒前
LLL发布了新的文献求助10
15秒前
Yxy完成签到,获得积分10
15秒前
Jiny发布了新的文献求助10
15秒前
16秒前
16秒前
隐形曼青应助oohey采纳,获得30
16秒前
koi发布了新的文献求助10
17秒前
竹筏过海应助韩同刚采纳,获得60
18秒前
姚文超发布了新的文献求助10
19秒前
小可乐发布了新的文献求助10
21秒前
Jisong完成签到,获得积分20
22秒前
杨a完成签到,获得积分10
23秒前
调研昵称发布了新的文献求助10
23秒前
柏小霜完成签到 ,获得积分10
24秒前
lijingwen发布了新的文献求助10
24秒前
yxx应助陈小小采纳,获得10
24秒前
晏晏完成签到,获得积分10
27秒前
njuxyh完成签到,获得积分10
27秒前
Soir完成签到 ,获得积分10
27秒前
坚强的寻桃关注了科研通微信公众号
28秒前
qiuling发布了新的文献求助30
30秒前
32秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386887
求助须知:如何正确求助?哪些是违规求助? 2999939
关于积分的说明 8787738
捐赠科研通 2685689
什么是DOI,文献DOI怎么找? 1471131
科研通“疑难数据库(出版商)”最低求助积分说明 680167
邀请新用户注册赠送积分活动 672766