Spatial-Temporal analysis of urban environmental variables using building height features

城市热岛 可持续发展 环境数据 城市规划 遥感 环境科学 自然地理学 采样(信号处理) 地理 环境资源管理 气象学 计算机科学 生态学 计算机视觉 生物 滤波器(信号处理)
作者
Mohammad Kakooei,Yasser Baleghi
出处
期刊:urban climate [Elsevier]
卷期号:52: 101736-101736 被引量:2
标识
DOI:10.1016/j.uclim.2023.101736
摘要

The 11th Sustainable Development Goal (SDG) is focused on sustainable cities and communities and is closely related to other SDGs such as Good health and well-being (the third SDG) and climate action (the 13th SDG). However, the lack of data has made it difficult to evaluate the success of reaching these goals. To address this, a method is proposed in this paper to generate temporal building height maps and extract features from the 3D structure of urban areas to examine their relationship with environmental variables, acquired from remote sensing satellites. Therefore, no survey data is required from the study area. Building height map is generated by processing Sentinel-1, Sentinel-2, and Nighttime light data by a UNet-based deep model. The results showed significant improvements in Mean Square Errors compared to available building maps in Berlin and London. In the second step, several features were extracted from the 3D structure of urban areas, and their relationship with environmental variables such as atmosphere contents from Sentinel-5 data and Urban Heat Island (UHI) from MODIS was examined via shallow regression models. The spatial study shows high correlation between each environmental variable and height map features in a neighborhood, with R2 scores of 0.78, 0.94, 0.92, 0.7, and 0.88 for CO2, CO, NO2, SO2, and UHI, respectively. It is found the environmental parameters are shaped by the collective building heights within a specific neighborhood, rather than hinging on the individual building heights at the sampling site. Furthermore, spatial resolution plays a significant role. In the case of the MODIS-based heat island map, a 3 km neighborhood yields a high R2-score, whereas when utilizing Sentinel-5 data, it is advisable to employ a larger neighborhood. Furthermore, the temporal study shows even higher R2 scores than the spatial domain, indicating the temporal reliability of the proposed method. The findings of this study can be used by governors and decision makers for sustainable urban development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
lin完成签到,获得积分10
刚刚
ping完成签到,获得积分10
刚刚
刚刚
刚刚
赘婿应助Charming采纳,获得10
刚刚
陆碌路完成签到,获得积分10
刚刚
额我认为发布了新的文献求助10
1秒前
1秒前
隐形觅翠完成签到,获得积分10
1秒前
小木虫完成签到,获得积分10
2秒前
xin完成签到,获得积分10
2秒前
Ziyi_Xu完成签到,获得积分10
2秒前
尔池完成签到,获得积分10
2秒前
2秒前
boltos完成签到,获得积分20
2秒前
huyulele发布了新的文献求助10
3秒前
多宝完成签到,获得积分10
3秒前
jkhjkhj完成签到,获得积分10
3秒前
英姑应助曙晨采纳,获得10
3秒前
媛媛关注了科研通微信公众号
3秒前
小大夫完成签到 ,获得积分10
4秒前
123完成签到,获得积分20
4秒前
科目三应助fcyyc采纳,获得10
4秒前
lin发布了新的文献求助10
5秒前
木目完成签到,获得积分10
5秒前
xiaoqi666完成签到 ,获得积分10
5秒前
edtaa发布了新的文献求助10
5秒前
射天狼发布了新的文献求助10
5秒前
灵犀完成签到,获得积分10
5秒前
小小完成签到 ,获得积分10
6秒前
不不鱼完成签到,获得积分10
6秒前
大白发布了新的文献求助10
6秒前
火狐狸kc完成签到,获得积分10
6秒前
烟花应助Eileen采纳,获得10
7秒前
shinysparrow应助iShine采纳,获得200
7秒前
爱吃萝卜的Bob完成签到,获得积分10
7秒前
明明完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580711
求助须知:如何正确求助?哪些是违规求助? 3150237
关于积分的说明 9481066
捐赠科研通 2851792
什么是DOI,文献DOI怎么找? 1567910
邀请新用户注册赠送积分活动 734306
科研通“疑难数据库(出版商)”最低求助积分说明 720584