Residual Deformable Convolution for better image de-weathering

增采样 计算机科学 残余物 人工智能 卷积(计算机科学) 图像复原 自编码 块(置换群论) 编码器 风化作用 计算机视觉 解码方法 像素 模式识别(心理学) 深度学习 图像(数学) 图像处理 算法 地质学 人工神经网络 数学 几何学 地貌学 操作系统
作者
Huikai Liu,Ao Zhang,Wenqian Zhu,Bin Fu,Bingjian Ding,Shengwu Xiong
出处
期刊:Pattern Recognition [Elsevier]
卷期号:147: 110093-110093
标识
DOI:10.1016/j.patcog.2023.110093
摘要

Adverse weather conditions pose great challenges to computer vision tasks like detection, segmentation, tracing et, al. in the wild. Image de-weathering aiming at removing weather degradations from images/videos has hence accumulated huge popularity as a significant component of image restoration. A large number of SOTA de-weathering methods are based on the autoencoder architecture for its excellent generalization and high computational efficiency. However, for most of these models, parts of high-frequency information are inevitably lost in the downsampling process in the encoders, while degraded features are unable to be effectively inhibited in the upsampling modules in the decoders, largely limiting the restoration performance. In this paper, we propose a multi-patch skip-forward structure for the encoder to deliver fine-grain features from shallow layers to deep layers, and provide more detailed semantics for feature embedding. For the decoding part, the Residual Deformable Convolutional module is developed to dynamically recover the degradation with spatial attention, achieving high-quality pixel-wise reconstruction. Extensive experiments show that our model outperforms many recently proposed state-of-the-art works on both specific-task de-weathering, such as de-raining, de-snowing, and all-task de-weathering. The source code is available at github.com/ZhangAoCanada/DeformDeweatherNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
小鱼鱼Fish发布了新的文献求助20
3秒前
yanghq13发布了新的文献求助10
3秒前
科目三应助123123采纳,获得10
4秒前
郑朗逸完成签到,获得积分10
4秒前
科研宝完成签到,获得积分10
4秒前
4秒前
6秒前
7秒前
SciGPT应助小黑采纳,获得10
8秒前
keyia完成签到,获得积分10
10秒前
10秒前
11秒前
yxy999完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
彭于晏应助zhangchaobo采纳,获得10
12秒前
painting应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
chen完成签到,获得积分10
13秒前
铁板完成签到,获得积分10
13秒前
guii完成签到,获得积分10
14秒前
pluto应助张宇宁采纳,获得10
14秒前
NexusExplorer应助张宇宁采纳,获得10
14秒前
完美世界应助李恩乐采纳,获得10
15秒前
烟花应助李恩乐采纳,获得10
16秒前
一叶知秋应助李恩乐采纳,获得10
16秒前
老实蝴蝶完成签到,获得积分10
16秒前
CodeCraft应助大胆的蜜粉采纳,获得10
16秒前
16秒前
忧心的沁完成签到,获得积分10
18秒前
18秒前
飘逸问晴完成签到,获得积分10
18秒前
科目三应助lpq采纳,获得10
20秒前
20秒前
火星上的芳芳完成签到,获得积分10
21秒前
小二郎应助DAIOKD采纳,获得10
21秒前
oldblack完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571875
求助须知:如何正确求助?哪些是违规求助? 4657052
关于积分的说明 14719094
捐赠科研通 4597872
什么是DOI,文献DOI怎么找? 2523456
邀请新用户注册赠送积分活动 1494258
关于科研通互助平台的介绍 1464354