机械臂
反向动力学
计算机视觉
人工智能
运动学
职位(财务)
计算机科学
步进电机
机器人运动学
伺服电动机
任务(项目管理)
机器人末端执行器
机器人
对象(语法)
机器视觉
运动学方程
控制理论(社会学)
工程类
控制(管理)
移动机器人
物理
经典力学
经济
纳米技术
材料科学
系统工程
财务
作者
Jian Wang,Haishen Peng
标识
DOI:10.1109/aicit59054.2023.10277796
摘要
Many robotic arms today incorporate machine vision to enhance the task diversity of robotic arms. In this paper a robotic arm grabbing system based on the camera is introduced. Firstly, the OpenMV module is used to integrate the machine vision recognition and position to make the robotic manipulator have the function of autonomous grasping. a normalized cross-correlation template matching algorithm is used to realize the recognition of the simulated chicken model, and the position information is calculated. Secondly, the D-H parameter method is used to describe the robotic arm hardware structure, and the inverse kinematics equations are obtained. Finally, after the embedded microcontroller obtains the position information into six joint angles through solving the inverse kinematics equations, the stepper motor drivers control the stepper motors on the joints of the robotic arm by means of the pulse output, so that the robotic arm moves to the chicken model position. The experimental test shows that the system can complete the grasping task of the chicken model.
科研通智能强力驱动
Strongly Powered by AbleSci AI