STFuse: Infrared and Visible Image Fusion via Semisupervised Transfer Learning

计算机科学 人工智能 图像融合 融合 红外线的 图像(数学) 计算机视觉 学习迁移 模式识别(心理学) 物理 光学 语言学 哲学
作者
Xue Wang,Zheng Guan,Wenhua Qian,Ahmed Alsaedi,Chengchao Wang,Ruiyao Ma
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2023.3328060
摘要

Infrared and visible image fusion (IVIF) aims to obtain an image that contains complementary information about the source images. However, it is challenging to define complementary information between source images in the lack of ground truth and without borrowing prior knowledge. Therefore, we propose a semisupervised transfer learning-based method for IVIF, termed STFuse, which aims to transfer knowledge from an informative source domain to a target domain, thus breaking the above limitations. The critical aspect of our method is to borrow supervised knowledge from the multifocus image fusion (MFIF) task and to filter out task-specific attribute knowledge by using a guidance loss Lg , which motivates its cross-task use in IVIF tasks. Using this cross-task knowledge effectively alleviates the limitation of the lack of ground truth on fusion performance, and the complementary expression ability under the constraint of supervised knowledge is more instructive than prior knowledge. Moreover, we designed a cross-feature enhancement module (CEM) that utilizes self-attention and mutual-attention features to guide each branch to refine features and then facilitate the integration of cross-modal complementary features. Extensive experiments demonstrate that our method has good advantages in terms of visual quality and statistical metrics, as well as the docking of high-level vision tasks, compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗渊思完成签到,获得积分10
刚刚
1秒前
曹帅发布了新的文献求助10
1秒前
废名完成签到,获得积分10
1秒前
在水一方应助lemonfang采纳,获得10
3秒前
4秒前
人小鸭儿大完成签到 ,获得积分10
5秒前
山山而川完成签到 ,获得积分10
5秒前
rosalieshi应助科研通管家采纳,获得30
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
慕青应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
7秒前
完美世界应助Zachary采纳,获得10
8秒前
nn发布了新的文献求助10
9秒前
疯狂老登完成签到,获得积分10
9秒前
小李完成签到,获得积分10
11秒前
14秒前
榴下晨光完成签到 ,获得积分10
14秒前
sunglow11完成签到,获得积分0
15秒前
从容的天空完成签到,获得积分20
15秒前
TORCH发布了新的文献求助10
15秒前
脑洞疼应助仁爱发卡采纳,获得10
16秒前
卡卡发布了新的文献求助10
17秒前
小米粥发布了新的文献求助10
17秒前
Yam完成签到,获得积分10
18秒前
kunkun完成签到,获得积分10
19秒前
19秒前
华仔应助qiiq1997采纳,获得10
20秒前
陶安柏完成签到 ,获得积分10
21秒前
21秒前
22秒前
collapsar1完成签到,获得积分10
23秒前
细腻天蓝完成签到,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023