Bi-ClueMVSNet: Learning Bidirectional Occlusion Clues for Multi-View Stereo

稳健性(进化) 计算机科学 人工智能 推论 点云 深度图 计算机视觉 闭塞 深度学习 图像(数学) 医学 生物化学 化学 心脏病学 基因
作者
Zhe Zhang,Yuxi Hu,Huachen Gao,Ronggang Wang
标识
DOI:10.1109/ijcnn54540.2023.10191325
摘要

Deep learning-based multi-view stereo (MVS) meth-ods have achieved promising results in recent years. However, very few existing works take the occlusion issues into consideration, leading to poor reconstruction results on the boundaries and occluded areas. In this paper, the Bidirectional Occlusion Clues-based Multi-View Stereo Network (Bi-ClueMVSNet) is proposed as an end-to-end MVS framework that explicitly models the occlusion obstacle for depth map inference and 3D modeling. To this end, we use bidirectional projection for the first time to reduce the propagation and accumulation of incorrect matches and build the occlusion-enhanced network to further advance the representational ability from 2D visibility maps to 3D occlusion clues. As for depth map estimation, we combine the characteristics of both regression and classification approaches to propose the adaptive depth map inference strategy. Besides, the robustness of the training process is further guaranteed and elevated by the occlusion clues-based loss function. The proposed method significantly improves the accuracy of depth map inference in boundaries and heavily occluded areas and brings the overall quality of the reconstructed point cloud to a new altitude. Extensive experiments are performed on DTU, Tanks and Temples, and BlendedMVS datasets to demonstrate the persuasiveness of the proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助专注臻采纳,获得10
1秒前
1秒前
JY'发布了新的文献求助10
1秒前
Dnn发布了新的文献求助10
2秒前
华仔应助大胆太阳采纳,获得10
2秒前
2秒前
shadow发布了新的文献求助10
3秒前
3秒前
3秒前
ayan发布了新的文献求助10
3秒前
3秒前
江年完成签到 ,获得积分10
3秒前
NexusExplorer应助miles采纳,获得10
4秒前
雪球发布了新的文献求助10
4秒前
寻梦完成签到,获得积分0
5秒前
青柠发布了新的文献求助10
5秒前
5秒前
nn发布了新的文献求助10
6秒前
6秒前
cheng2003完成签到,获得积分10
7秒前
河镜发布了新的文献求助30
7秒前
7秒前
7秒前
Maxw发布了新的文献求助10
8秒前
打打应助超级的溪灵采纳,获得10
8秒前
研友_VZG7GZ应助ayan采纳,获得10
8秒前
思源应助小骄傲采纳,获得10
9秒前
10秒前
lwk发布了新的文献求助10
10秒前
她是姑娘发布了新的文献求助10
11秒前
11秒前
SciGPT应助奈芙莲采纳,获得10
12秒前
12秒前
Frank应助科研废物采纳,获得10
12秒前
弄井发布了新的文献求助10
12秒前
13秒前
标致绿柏发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572655
求助须知:如何正确求助?哪些是违规求助? 4658473
关于积分的说明 14722303
捐赠科研通 4598469
什么是DOI,文献DOI怎么找? 2523850
邀请新用户注册赠送积分活动 1494533
关于科研通互助平台的介绍 1464586