人工智能
计算机科学
图像配准
准直器
初始化
计算机视觉
点扩散函数
光学
中子成像
GSM演进的增强数据速率
中子
图像(数学)
物理
量子力学
程序设计语言
作者
Qingtian Zeng,Congli Yang,Quan Gan,Qihong Wang,Shansong Wang
出处
期刊:Applied Optics
[Optica Publishing Group]
日期:2023-09-14
卷期号:62 (29): 7611-7611
摘要
For high-precision industrial non-destructive testing, multimodal image registration technology can be employed to register X-ray and neutron images. X-ray and neutron image registration algorithms usually use conventional methods through iterative optimization. These methods will increase the cost of registration time and require more initialization parameters. The imaging results of internal sample structures can suffer from edge blurring due to the influence of a neutron beam collimator aperture, X-ray focal point, and imaging angles. We present an unsupervised learning model, EDIRNet, based on deep learning for deformable registration of X-ray and neutron images. We define the registration process as a function capable of estimating the flow field from input images. By leveraging deep learning techniques, we effectively parameterize this function. Consequently, given a registration image, our optimized network parameters enable rapid and direct estimation of the flow field between the images. We design an attention-based edge enhancement module to enhance the edge features of the image. For evaluating our presented network model, we utilize a dataset including 552 pairs of X-ray and neutron images. The experimental results show that the registration accuracy of EDIRNet reaches 93.09%. Compared with traditional algorithms, the accuracy of EDIRNet is improved by 3.17%, and the registration time is reduced by 28.75 s.
科研通智能强力驱动
Strongly Powered by AbleSci AI