Hybrid random aggregation model and Bayesian optimization‐based convolutional neural network for estimating the concrete compressive strength

抗压强度 级配 卷积神经网络 骨料(复合) 人工神经网络 计算机科学 集合(抽象数据类型) 人工智能 材料科学 复合材料 程序设计语言
作者
Kai Li,Lei Pan,Xiaohui Guo,Yuanfeng Wang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (4): 559-574 被引量:9
标识
DOI:10.1111/mice.13096
摘要

Abstract Numerous experimental studies have shown the type and gradation of coarse aggregates effect on the mechanical properties of concrete. The type and gradation of coarse aggregates have not been taken into account in the available machine learning prediction models. In this study, a two‐dimensional concrete microscopic image was generated by using a random aggregate model (RAM), and the coarse aggregate and other concrete ingredients were represented innovatively using polygons and trichromatic chromaticity values in the RAM images. The RAM image set was created by applying this method to represent 1110 sets of different concrete mixes. Then based on the Bayesian optimization algorithm and the image set, a compressive strength prediction model considering the effect of coarse aggregate types and gradations was developed utilizing a convolutional neural network (CNN) model. Meanwhile, an artificial neural network (ANN) compressive strength prediction model was developed using 1110 sets of mix ratio data. The results show that the proposed RAM image generation method has the capability to represent different concrete mix ratios collected in this study. The prediction performance of the CNN compressive strength model considering aggregate types and gradations is better than that of the ANN model. The method can provide a new perspective for predicting other concrete mechanical properties and technically support performance‐based intelligent concrete mix design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen关注了科研通微信公众号
刚刚
红红发布了新的文献求助10
刚刚
1秒前
小二郎应助高磊采纳,获得10
1秒前
2秒前
yu完成签到,获得积分10
2秒前
li完成签到,获得积分10
3秒前
Stephanie发布了新的文献求助10
5秒前
口腔飞飞完成签到 ,获得积分10
5秒前
充电宝应助翠翠采纳,获得10
5秒前
雨下着的坡道完成签到,获得积分10
7秒前
lisizheng完成签到,获得积分10
7秒前
科研通AI2S应助汤姆采纳,获得10
8秒前
高磊完成签到,获得积分10
8秒前
WZ0904发布了新的文献求助10
8秒前
Akim应助无情向梦采纳,获得10
8秒前
joey完成签到,获得积分10
9秒前
10秒前
所所应助坚强的樱采纳,获得10
10秒前
11秒前
专注秋尽完成签到,获得积分10
11秒前
我的小伙伴应助lisizheng采纳,获得50
11秒前
12秒前
wait完成签到,获得积分10
12秒前
高磊发布了新的文献求助10
13秒前
13秒前
14秒前
潦草发布了新的文献求助10
14秒前
抵澳报了完成签到,获得积分10
14秒前
16秒前
16秒前
17秒前
17秒前
ATAYA发布了新的文献求助10
18秒前
星瑆心发布了新的文献求助10
18秒前
Lazarus_x完成签到,获得积分10
19秒前
whm发布了新的文献求助10
20秒前
豆dou发布了新的文献求助10
22秒前
旭日东升完成签到 ,获得积分10
23秒前
yyyyou完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808