Centralized decomposition approach in LSTM for Bitcoin price prediction

计算机科学 均方误差 分解 双峰性 系列(地层学) 时间序列 奇异谱分析 人工智能 计量经济学 机器学习 模式识别(心理学) 统计 奇异值分解 数学 量子力学 生物 银河系 物理 古生物学 生态学
作者
Eunho Koo,Geonwoo Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121401-121401 被引量:19
标识
DOI:10.1016/j.eswa.2023.121401
摘要

It has been reported that integrating time-series decomposition methods and neural network models improves financial time-series prediction performance. Despite its practical importance, the prediction performance of cryptocurrency prices, including Bitcoin, at the tail domain of the label distribution is generally less successful than the mean performance across the entire domain of the label distribution. In order to enhance the overall predictive performance of the Bitcoin price, we propose the Centralized Clusters Distribution (CCD) as a novel input data filtering mechanism that significantly improves both the tail performance and the overall performance by mitigating the extreme bimodality inherent in Bitcoin price. The combination of CCD and the Weighted Empirical Stretching (WES) loss function, which imposes different penalties depending on the label distribution, outcomes in an additional performance gain. In the Long-Short Term Memory (LSTM) and the Singular Spectrum Analysis (SSA) decomposition method, the CCD-WES strategy outperforms the native experiment by 11.5% and 22.5% Root Mean Square Error (RMSE) gain in the whole and extreme domains of the label, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
bab发布了新的文献求助10
刚刚
刚刚
刚刚
李健应助nana采纳,获得10
1秒前
薇薇辣完成签到 ,获得积分10
1秒前
lkh完成签到,获得积分10
1秒前
gaogao完成签到,获得积分10
1秒前
2秒前
yang完成签到,获得积分10
3秒前
3秒前
简单的小土豆完成签到 ,获得积分10
4秒前
4秒前
123发布了新的文献求助10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得60
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
风中的笑白完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
lkh发布了新的文献求助10
7秒前
所所应助shuyan采纳,获得10
7秒前
天天快乐应助lijg71采纳,获得10
7秒前
卫小铁完成签到,获得积分10
7秒前
擦书发布了新的文献求助10
7秒前
传奇3应助Bob采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458