材料科学
宽带
纳米环
光电子学
太阳能
能量收集
光学
能量(信号处理)
物理
电气工程
量子力学
工程类
作者
Zhaolong Wang,Zhen Liu,Ce Zhang,Dongsheng Yang,Ping Cheng,Yong Shuai
出处
期刊:Solar Energy
[Elsevier]
日期:2022-09-01
卷期号:243: 153-162
被引量:19
标识
DOI:10.1016/j.solener.2022.07.026
摘要
• Broadband absorption efficiency of notched nanorings absorber is achieved. • The nearly perfect solar energy harvesting is attributed to the integration of multiple modes of resonances from the notched nanorings. • The incident angle of light significantly affects the absorptance of our absorber because of the notched nanorings. • The gap size and ring eccentricity make a big difference on broadband absorption of our absorbers. Various methods for solar energy utilisation are being developed for reducing the emission of CO 2 from fossil fuels, and perfect solar absorbers are attracting increasing attention. In the present study, a metamaterial solar absorber is proposed. The absorber consists of an array of Ni notched nanorings that are periodically arranged on a gold substrate with a layer of SiO 2 dielectric between the rings. The proposed absorber achieves nearly perfect harvesting of incident solar energy, which is attributed to the integration of multiple modes of resonances from the notched nanorings on the top, including electric and magnetic polaritons. However, the composition, geometries, and arrangement of the notched nanorings significantly affect the absorption properties of our absorbers with a small tolerance. Additionally, the incident angle of light significantly affects the absorptance of our absorber because of the non-rotationally symmetric notched nanorings. When submerged in water, the absorbers that totally harvest solar energy can act as solar evaporators, which in turn promise potential applications involving solar vapour generation, sterilisation, and seawater treatment that can be enabled by solar energy for producing freshwater.
科研通智能强力驱动
Strongly Powered by AbleSci AI