Notched nanoring wideband absorber for total solar energy harvesting

材料科学 宽带 纳米环 光电子学 太阳能 能量收集 光学 能量(信号处理) 物理 电气工程 量子力学 工程类
作者
Zhaolong Wang,Zhen Liu,Ce Zhang,Dongsheng Yang,Ping Cheng,Yong Shuai
出处
期刊:Solar Energy [Elsevier BV]
卷期号:243: 153-162 被引量:19
标识
DOI:10.1016/j.solener.2022.07.026
摘要

• Broadband absorption efficiency of notched nanorings absorber is achieved. • The nearly perfect solar energy harvesting is attributed to the integration of multiple modes of resonances from the notched nanorings. • The incident angle of light significantly affects the absorptance of our absorber because of the notched nanorings. • The gap size and ring eccentricity make a big difference on broadband absorption of our absorbers. Various methods for solar energy utilisation are being developed for reducing the emission of CO 2 from fossil fuels, and perfect solar absorbers are attracting increasing attention. In the present study, a metamaterial solar absorber is proposed. The absorber consists of an array of Ni notched nanorings that are periodically arranged on a gold substrate with a layer of SiO 2 dielectric between the rings. The proposed absorber achieves nearly perfect harvesting of incident solar energy, which is attributed to the integration of multiple modes of resonances from the notched nanorings on the top, including electric and magnetic polaritons. However, the composition, geometries, and arrangement of the notched nanorings significantly affect the absorption properties of our absorbers with a small tolerance. Additionally, the incident angle of light significantly affects the absorptance of our absorber because of the non-rotationally symmetric notched nanorings. When submerged in water, the absorbers that totally harvest solar energy can act as solar evaporators, which in turn promise potential applications involving solar vapour generation, sterilisation, and seawater treatment that can be enabled by solar energy for producing freshwater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助30
1秒前
47发布了新的文献求助10
1秒前
张mingyu123发布了新的文献求助30
1秒前
2秒前
漂亮豁发布了新的文献求助10
2秒前
大天发布了新的文献求助30
2秒前
想飞的猪完成签到,获得积分10
2秒前
2秒前
漂亮幻莲发布了新的文献求助10
3秒前
大大完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
科研通AI6应助小柯采纳,获得10
4秒前
汉堡包应助ccc采纳,获得10
4秒前
5秒前
1226813885发布了新的文献求助10
5秒前
5秒前
yeyeye完成签到,获得积分10
6秒前
张张张xxx完成签到,获得积分10
6秒前
mary611完成签到,获得积分10
6秒前
乌龟娟完成签到,获得积分10
8秒前
默存发布了新的文献求助10
9秒前
Steffi完成签到,获得积分10
9秒前
科研通AI5应助张mingyu123采纳,获得10
9秒前
高高ai发布了新的文献求助10
9秒前
9秒前
9秒前
FashionBoy应助NTw_wzw采纳,获得10
10秒前
剑门侠客应助一点点脸红采纳,获得10
10秒前
domingo发布了新的文献求助30
10秒前
777完成签到,获得积分10
10秒前
鱼不鱼发布了新的文献求助10
10秒前
浮游应助李闻闻采纳,获得10
10秒前
47完成签到,获得积分10
11秒前
HMX完成签到,获得积分10
11秒前
11秒前
隐形曼青应助Fiona采纳,获得30
12秒前
香蕉觅云应助zSmart采纳,获得10
14秒前
英姑应助柔弱翎采纳,获得30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192262
求助须知:如何正确求助?哪些是违规求助? 4375259
关于积分的说明 13624367
捐赠科研通 4229578
什么是DOI,文献DOI怎么找? 2320065
邀请新用户注册赠送积分活动 1318422
关于科研通互助平台的介绍 1268650