Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks

可解释性 维数之咒 人工智能 联营 计算机科学 人工神经网络 卷积神经网络 机器学习 模式识别(心理学) 薄膜 材料科学 纳米技术
作者
Felipe Oviedo,Zekun Ren,Shijing Sun,Charlie Settens,Zhe Liu,Noor Titan Putri Hartono,Savitha Ramasamy,Brian DeCost,Siyu Tian,Giuseppe Romano,A. Gilad Kusne,Tonio Buonassisi
出处
期刊:Cornell University - arXiv 被引量:11
标识
DOI:10.48550/arxiv.1811.08425
摘要

X-ray diffraction (XRD) data acquisition and analysis is among the most time-consuming steps in the development cycle of novel thin-film materials. We propose a machine-learning-enabled approach to predict crystallographic dimensionality and space group from a limited number of thin-film XRD patterns. We overcome the scarce-data problem intrinsic to novel materials development by coupling a supervised machine learning approach with a model agnostic, physics-informed data augmentation strategy using simulated data from the Inorganic Crystal Structure Database (ICSD) and experimental data. As a test case, 115 thin-film metal halides spanning 3 dimensionalities and 7 space-groups are synthesized and classified. After testing various algorithms, we develop and implement an all convolutional neural network, with cross validated accuracies for dimensionality and space-group classification of 93% and 89%, respectively. We propose average class activation maps, computed from a global average pooling layer, to allow high model interpretability by human experimentalists, elucidating the root causes of misclassification. Finally, we systematically evaluate the maximum XRD pattern step size (data acquisition rate) before loss of predictive accuracy occurs, and determine it to be 0.16{\deg}, which enables an XRD pattern to be obtained and classified in 5.5 minutes or less.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anan发布了新的文献求助10
刚刚
乐乐应助肉肉采纳,获得10
刚刚
爆米花应助Jeri采纳,获得10
1秒前
lili888完成签到,获得积分10
1秒前
松弛的小刀完成签到,获得积分10
1秒前
铅笔丶完成签到,获得积分10
2秒前
abrr完成签到,获得积分10
2秒前
小高同志发布了新的文献求助10
2秒前
Hilda007发布了新的文献求助30
2秒前
彭洪凯完成签到,获得积分10
2秒前
yyyzzz完成签到,获得积分10
2秒前
希望天下0贩的0应助XYF采纳,获得10
3秒前
赘婿应助wait采纳,获得10
4秒前
小南瓜完成签到,获得积分10
4秒前
han完成签到,获得积分10
5秒前
小南瓜发布了新的文献求助10
7秒前
8秒前
8秒前
orixero应助杨亚轩采纳,获得10
8秒前
andrele发布了新的文献求助10
9秒前
田様应助昌莆采纳,获得10
10秒前
领导范儿应助Mathletics采纳,获得10
10秒前
10秒前
何书易发布了新的文献求助20
10秒前
白昼星辰完成签到,获得积分10
11秒前
12秒前
沉默丹亦完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
李卓发布了新的文献求助10
14秒前
科研通AI6应助Ginkgo采纳,获得10
14秒前
mikasa发布了新的文献求助10
15秒前
华仔应助文静幼荷采纳,获得10
15秒前
15秒前
15秒前
脑洞疼应助肉肉采纳,获得10
16秒前
16秒前
赘婿应助木木采纳,获得10
17秒前
科研通AI6应助阿泽采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393870
求助须知:如何正确求助?哪些是违规求助? 4515281
关于积分的说明 14053296
捐赠科研通 4426429
什么是DOI,文献DOI怎么找? 2431383
邀请新用户注册赠送积分活动 1423533
关于科研通互助平台的介绍 1402529