Rapid metabolic fingerprinting with the aid of chemometric models to identify authenticity of natural medicines: Turmeric, Ocimum, and Withania somnifera study

索马里风 罗勒 传统医学 药用植物 化学 生物技术 生物 医学 病理 替代医学
作者
Samreen Gul Khan,Abhishek Kumar,Anjali Singh,S. N. Singh,Basant Kumar Dubey,R.K. Lal,Arvind S. Negi,Nicholas Birse,Prabodh Kumar Trivedi,Christopher T. Elliott,Ratnasekhar Ch
出处
期刊:Journal of Pharmaceutical Analysis [Elsevier]
卷期号:13 (9): 1041-1057 被引量:12
标识
DOI:10.1016/j.jpha.2023.04.018
摘要

Herbal medicines are popular natural medicines that have been used for decades. The use of alternative medicines continues to expand rapidly across the world. The World Health Organization suggests that quality assessment of natural medicines is essential for any therapeutic or health care applications, as their therapeutic potential varies between different geographic origins, plant species, and varieties. Classification of herbal medicines based on a limited number of secondary metabolites is not an ideal approach. Their quality should be considered based on a complete metabolic profile, as their pharmacological activity is not due to a few specific secondary metabolites but rather a larger group of bioactive compounds. A holistic and integrative approach using rapid and nondestructive analytical strategies for the screening of herbal medicines is required for robust characterization. In this study, a rapid and effective quality assessment system for geographical traceability, species, and variety-specific authenticity of the widely used natural medicines turmeric, Ocimum, and Withania somnifera was investigated using Fourier transform near-infrared (FT-NIR) spectroscopy-based metabolic fingerprinting. Four different geographical origins of turmeric, five different Ocimum species, and three different varieties of roots and leaves of Withania somnifera were studied with the aid of machine learning approaches. Extremely good discrimination (R2 > 0.98, Q2 > 0.97, and accuracy = 1.0) with sensitivity and specificity of 100% was achieved using this metabolic fingerprinting strategy. Our study demonstrated that FT-NIR-based rapid metabolic fingerprinting can be used as a robust analytical method to authenticate several important medicinal herbs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心的代男完成签到,获得积分10
刚刚
Sisyphe完成签到,获得积分10
刚刚
wzh完成签到,获得积分10
刚刚
CipherSage应助似非采纳,获得10
刚刚
wxq完成签到,获得积分10
1秒前
笑点低的银耳汤给笑点低的银耳汤的求助进行了留言
2秒前
wzh发布了新的文献求助10
2秒前
eizo驳回了慕青应助
3秒前
李健应助ryt采纳,获得10
4秒前
完美世界应助哭泣半双采纳,获得30
5秒前
Noah完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
owoow发布了新的文献求助10
7秒前
hold完成签到,获得积分20
8秒前
坎坷完成签到,获得积分10
8秒前
9秒前
飘逸衫完成签到,获得积分10
10秒前
天天快乐应助科研通管家采纳,获得10
11秒前
坎坷发布了新的文献求助10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
genomed应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
美满的涔发布了新的文献求助10
12秒前
12秒前
13秒前
潇洒问玉完成签到,获得积分10
13秒前
领导范儿应助朴实香露采纳,获得10
13秒前
13秒前
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125118
求助须知:如何正确求助?哪些是违规求助? 2775421
关于积分的说明 7726646
捐赠科研通 2430997
什么是DOI,文献DOI怎么找? 1291569
科研通“疑难数据库(出版商)”最低求助积分说明 622188
版权声明 600352