A User Purchase Behavior Prediction Method Based on XGBoost

计算机科学 机器学习 人工智能 支持向量机 特征(语言学) 随机森林 数据挖掘 梯度升压 采购 Boosting(机器学习) 集合预报 工程类 运营管理 语言学 哲学
作者
Wenle Wang,Wentao Xiong,Jing Wang,Tao Lei,Shan Li,Yugen Yi,Xiang Zou,Cui Li
出处
期刊:Electronics [MDPI AG]
卷期号:12 (9): 2047-2047 被引量:5
标识
DOI:10.3390/electronics12092047
摘要

With the increasing use of electronic commerce, online purchasing users have been rapidly rising. Predicting user behavior has therefore become a vital issue based on the collected data. However, traditional machine learning algorithms for prediction require significant computing time and often produce unsatisfactory results. In this paper, a prediction model based on XGBoost is proposed to predict user purchase behavior. Firstly, a user value model (LDTD) utilizing multi-feature fusion is proposed to differentiate between user types based on the available user account data. The multi-feature behavior fusion is carried out to generate the user tag feature according to user behavior patterns. Next, the XGBoost feature importance model is employed to analyze multi-dimensional features and identify the model with the most significant weight value as the key feature for constructing the model. This feature, together with other user features, is then used for prediction via the XGBoost model. Compared to existing machine learning models such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Back Propagation Neural Network (BPNN), the eXtreme Gradient Boosting (XGBoost) model outperforms with an accuracy of 0.9761, an F1 score of 0.9763, and a ROC value of 0.9768. Thus, the XGBoost model demonstrates superior stability and algorithm efficiency, making it an ideal choice for predicting user purchase behavior with high levels of accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
贪玩飞机发布了新的文献求助10
1秒前
1秒前
时安完成签到 ,获得积分10
1秒前
爆米花应助lxj采纳,获得10
1秒前
2秒前
zkyyinf_zero发布了新的文献求助10
2秒前
2秒前
kkppp发布了新的文献求助10
3秒前
SKYE发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
酷炫保温杯关注了科研通微信公众号
5秒前
5秒前
You完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
是个圆蛋发布了新的文献求助30
6秒前
7秒前
7秒前
7秒前
Joker发布了新的文献求助10
7秒前
nil完成签到,获得积分10
7秒前
7秒前
小小发布了新的文献求助10
7秒前
7秒前
luquanji完成签到,获得积分10
8秒前
烟花应助水123采纳,获得10
8秒前
8秒前
yyy发布了新的文献求助10
8秒前
mookie发布了新的文献求助10
9秒前
llt完成签到,获得积分20
9秒前
9秒前
yuanyaun发布了新的文献求助30
9秒前
英姑应助lang采纳,获得10
9秒前
里里发布了新的文献求助10
9秒前
舒心的荟完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593599
求助须知:如何正确求助?哪些是违规求助? 4679468
关于积分的说明 14810164
捐赠科研通 4644508
什么是DOI,文献DOI怎么找? 2534573
邀请新用户注册赠送积分活动 1502632
关于科研通互助平台的介绍 1469366