Adv-Bot: Realistic adversarial botnet attacks against network intrusion detection systems

对抗制 僵尸网络 计算机科学 逃避(道德) 入侵检测系统 计算机安全 脆弱性(计算) 领域(数学) 恶意软件 对抗性机器学习 多样性(控制论) 人工智能 网络安全 方案(数学) 机器学习 互联网 万维网 生物 数学 数学分析 纯数学 免疫学 免疫系统
作者
Islam Debicha,Benjamin Cochez,Tayeb Kenaza,Thibault Debatty,Jean‐Michel Dricot,Wim Mees
出处
期刊:Computers & Security [Elsevier]
卷期号:129: 103176-103176 被引量:18
标识
DOI:10.1016/j.cose.2023.103176
摘要

Due to the numerous advantages of machine learning (ML) algorithms, many applications now incorporate them. However, many studies in the field of image classification have shown that MLs can be fooled by a variety of adversarial attacks. These attacks take advantage of ML algorithms’ inherent vulnerability. This raises many questions in the cybersecurity field, where a growing number of researchers are recently investigating the feasibility of such attacks against machine learning-based security systems, such as intrusion detection systems. The majority of this research demonstrates that it is possible to fool a model using features extracted from a raw data source, but it does not take into account the real implementation of such attacks, i.e., the reverse transformation from theory to practice. The real implementation of these adversarial attacks would be influenced by various constraints that would make their execution more difficult. As a result, the purpose of this study was to investigate the actual feasibility of adversarial attacks, specifically evasion attacks, against network-based intrusion detection systems (NIDS), demonstrating that it is entirely possible to fool these ML-based IDSs using our proposed adversarial algorithm while assuming as many constraints as possible in a black-box setting. In addition, since it is critical to design defense mechanisms to protect ML-based IDSs against such attacks, a defensive scheme is presented. Realistic botnet traffic traces are used to assess this work. Our goal is to create adversarial botnet traffic that can avoid detection while still performing all of its intended malicious functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曾经的灵完成签到,获得积分20
1秒前
bkagyin应助小宇采纳,获得10
1秒前
许之北完成签到 ,获得积分10
1秒前
1秒前
船舵发布了新的文献求助10
1秒前
gaos完成签到,获得积分10
2秒前
念念发布了新的文献求助10
2秒前
An_mie完成签到,获得积分10
2秒前
2秒前
2秒前
Arabella完成签到,获得积分10
3秒前
HEIKU应助追梦人采纳,获得10
3秒前
3秒前
小T儿发布了新的文献求助10
3秒前
852应助woxiangbiye采纳,获得10
3秒前
飞羽完成签到,获得积分10
4秒前
Owen应助cherry采纳,获得10
4秒前
坚定的老六完成签到,获得积分10
4秒前
协和_子鱼完成签到,获得积分0
4秒前
5秒前
Hyde完成签到,获得积分10
6秒前
小南孩完成签到,获得积分10
6秒前
6秒前
7秒前
研友_VZG7GZ应助keyancui采纳,获得10
7秒前
康康完成签到 ,获得积分10
8秒前
英姑应助毕业就好采纳,获得10
8秒前
虚心的迎荷完成签到,获得积分10
8秒前
脑洞疼应助少侠不是菜鸟采纳,获得10
8秒前
8秒前
祝雲完成签到,获得积分10
8秒前
新的心跳发布了新的文献求助10
8秒前
壹拾柒完成签到,获得积分10
9秒前
9秒前
9秒前
mimi发布了新的文献求助10
9秒前
呆呆完成签到,获得积分10
10秒前
blebui应助姜茶采纳,获得10
10秒前
幼稚园小新完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672