已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adv-Bot: Realistic adversarial botnet attacks against network intrusion detection systems

对抗制 僵尸网络 计算机科学 逃避(道德) 入侵检测系统 计算机安全 脆弱性(计算) 领域(数学) 恶意软件 对抗性机器学习 多样性(控制论) 人工智能 网络安全 方案(数学) 机器学习 互联网 万维网 生物 数学 数学分析 纯数学 免疫学 免疫系统
作者
Islam Debicha,Benjamin Cochez,Tayeb Kenaza,Thibault Debatty,Jean‐Michel Dricot,Wim Mees
出处
期刊:Computers & Security [Elsevier]
卷期号:129: 103176-103176 被引量:18
标识
DOI:10.1016/j.cose.2023.103176
摘要

Due to the numerous advantages of machine learning (ML) algorithms, many applications now incorporate them. However, many studies in the field of image classification have shown that MLs can be fooled by a variety of adversarial attacks. These attacks take advantage of ML algorithms’ inherent vulnerability. This raises many questions in the cybersecurity field, where a growing number of researchers are recently investigating the feasibility of such attacks against machine learning-based security systems, such as intrusion detection systems. The majority of this research demonstrates that it is possible to fool a model using features extracted from a raw data source, but it does not take into account the real implementation of such attacks, i.e., the reverse transformation from theory to practice. The real implementation of these adversarial attacks would be influenced by various constraints that would make their execution more difficult. As a result, the purpose of this study was to investigate the actual feasibility of adversarial attacks, specifically evasion attacks, against network-based intrusion detection systems (NIDS), demonstrating that it is entirely possible to fool these ML-based IDSs using our proposed adversarial algorithm while assuming as many constraints as possible in a black-box setting. In addition, since it is critical to design defense mechanisms to protect ML-based IDSs against such attacks, a defensive scheme is presented. Realistic botnet traffic traces are used to assess this work. Our goal is to create adversarial botnet traffic that can avoid detection while still performing all of its intended malicious functionality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanyuan发布了新的文献求助10
3秒前
体贴代容发布了新的文献求助10
4秒前
茄哥完成签到 ,获得积分10
4秒前
Zhang完成签到,获得积分10
4秒前
研友_ZGRvon完成签到,获得积分10
7秒前
丘比特应助Uncanny采纳,获得10
8秒前
zwh关注了科研通微信公众号
8秒前
Norcae完成签到 ,获得积分10
8秒前
wenyiboy完成签到,获得积分10
9秒前
cciocio完成签到,获得积分20
11秒前
貔貅完成签到,获得积分10
14秒前
zzn完成签到,获得积分10
15秒前
ss完成签到,获得积分10
16秒前
22秒前
所所应助yuanyuan采纳,获得10
22秒前
阳光的樱发布了新的文献求助20
29秒前
肆_完成签到 ,获得积分10
30秒前
31秒前
31秒前
32秒前
zzz完成签到,获得积分10
33秒前
欢呼的世立完成签到 ,获得积分10
35秒前
光亮翠风发布了新的文献求助10
35秒前
墨染完成签到 ,获得积分10
37秒前
cciocio发布了新的文献求助10
38秒前
体贴代容发布了新的文献求助30
38秒前
仄言发布了新的文献求助30
38秒前
光亮翠风完成签到,获得积分10
39秒前
miracle完成签到,获得积分10
40秒前
djnjv完成签到,获得积分10
41秒前
42秒前
shunlimaomi完成签到 ,获得积分10
43秒前
47秒前
Hello应助yuxixi采纳,获得10
47秒前
djnjv发布了新的文献求助10
48秒前
单身的绮菱完成签到,获得积分20
49秒前
李爱国应助韩擎宇采纳,获得20
54秒前
刘kk完成签到 ,获得积分10
54秒前
梦里的大子刊完成签到 ,获得积分10
54秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599579
求助须知:如何正确求助?哪些是违规求助? 4685304
关于积分的说明 14838289
捐赠科研通 4669300
什么是DOI,文献DOI怎么找? 2538085
邀请新用户注册赠送积分活动 1505488
关于科研通互助平台的介绍 1470859