Adv-Bot: Realistic adversarial botnet attacks against network intrusion detection systems

对抗制 僵尸网络 计算机科学 逃避(道德) 入侵检测系统 计算机安全 脆弱性(计算) 领域(数学) 恶意软件 对抗性机器学习 多样性(控制论) 人工智能 网络安全 方案(数学) 机器学习 互联网 万维网 生物 数学 数学分析 纯数学 免疫学 免疫系统
作者
Islam Debicha,Benjamin Cochez,Tayeb Kenaza,Thibault Debatty,Jean‐Michel Dricot,Wim Mees
出处
期刊:Computers & Security [Elsevier BV]
卷期号:129: 103176-103176 被引量:18
标识
DOI:10.1016/j.cose.2023.103176
摘要

Due to the numerous advantages of machine learning (ML) algorithms, many applications now incorporate them. However, many studies in the field of image classification have shown that MLs can be fooled by a variety of adversarial attacks. These attacks take advantage of ML algorithms’ inherent vulnerability. This raises many questions in the cybersecurity field, where a growing number of researchers are recently investigating the feasibility of such attacks against machine learning-based security systems, such as intrusion detection systems. The majority of this research demonstrates that it is possible to fool a model using features extracted from a raw data source, but it does not take into account the real implementation of such attacks, i.e., the reverse transformation from theory to practice. The real implementation of these adversarial attacks would be influenced by various constraints that would make their execution more difficult. As a result, the purpose of this study was to investigate the actual feasibility of adversarial attacks, specifically evasion attacks, against network-based intrusion detection systems (NIDS), demonstrating that it is entirely possible to fool these ML-based IDSs using our proposed adversarial algorithm while assuming as many constraints as possible in a black-box setting. In addition, since it is critical to design defense mechanisms to protect ML-based IDSs against such attacks, a defensive scheme is presented. Realistic botnet traffic traces are used to assess this work. Our goal is to create adversarial botnet traffic that can avoid detection while still performing all of its intended malicious functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助开朗艳一采纳,获得10
刚刚
务实的寻凝完成签到 ,获得积分10
2秒前
3秒前
Mia发布了新的文献求助30
5秒前
彭剑封发布了新的文献求助10
5秒前
pazhao完成签到,获得积分10
6秒前
冬1发布了新的文献求助10
6秒前
军帽完成签到,获得积分20
8秒前
小蘑菇应助新嘟采纳,获得10
9秒前
9秒前
111完成签到,获得积分20
10秒前
Emily发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
搜集达人应助DENANANA采纳,获得30
12秒前
良言完成签到 ,获得积分10
12秒前
12秒前
彭剑封完成签到,获得积分10
12秒前
111发布了新的文献求助10
14秒前
14秒前
14秒前
执着雨泽完成签到,获得积分10
15秒前
15秒前
16秒前
wahhhlt发布了新的文献求助10
16秒前
Mia完成签到,获得积分10
17秒前
XZY发布了新的文献求助10
18秒前
烟花应助roxy采纳,获得10
18秒前
热心市民小红花应助昵称采纳,获得10
19秒前
星辰大海应助fei采纳,获得10
19秒前
19秒前
顾越完成签到,获得积分10
20秒前
乐乐应助daxiong采纳,获得10
21秒前
pazhao发布了新的文献求助10
21秒前
28秒前
坦率的正豪完成签到,获得积分10
28秒前
酷波er应助甜美不评采纳,获得10
29秒前
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975610
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200337
捐赠科研通 3256337
什么是DOI,文献DOI怎么找? 1798246
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806357