Adv-Bot: Realistic adversarial botnet attacks against network intrusion detection systems

对抗制 僵尸网络 计算机科学 逃避(道德) 入侵检测系统 计算机安全 脆弱性(计算) 领域(数学) 恶意软件 对抗性机器学习 多样性(控制论) 人工智能 网络安全 方案(数学) 机器学习 互联网 万维网 生物 数学 数学分析 纯数学 免疫学 免疫系统
作者
Islam Debicha,Benjamin Cochez,Tayeb Kenaza,Thibault Debatty,Jean‐Michel Dricot,Wim Mees
出处
期刊:Computers & Security [Elsevier BV]
卷期号:129: 103176-103176 被引量:18
标识
DOI:10.1016/j.cose.2023.103176
摘要

Due to the numerous advantages of machine learning (ML) algorithms, many applications now incorporate them. However, many studies in the field of image classification have shown that MLs can be fooled by a variety of adversarial attacks. These attacks take advantage of ML algorithms’ inherent vulnerability. This raises many questions in the cybersecurity field, where a growing number of researchers are recently investigating the feasibility of such attacks against machine learning-based security systems, such as intrusion detection systems. The majority of this research demonstrates that it is possible to fool a model using features extracted from a raw data source, but it does not take into account the real implementation of such attacks, i.e., the reverse transformation from theory to practice. The real implementation of these adversarial attacks would be influenced by various constraints that would make their execution more difficult. As a result, the purpose of this study was to investigate the actual feasibility of adversarial attacks, specifically evasion attacks, against network-based intrusion detection systems (NIDS), demonstrating that it is entirely possible to fool these ML-based IDSs using our proposed adversarial algorithm while assuming as many constraints as possible in a black-box setting. In addition, since it is critical to design defense mechanisms to protect ML-based IDSs against such attacks, a defensive scheme is presented. Realistic botnet traffic traces are used to assess this work. Our goal is to create adversarial botnet traffic that can avoid detection while still performing all of its intended malicious functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
黑黑发布了新的文献求助10
2秒前
2秒前
晚风挽清欢完成签到 ,获得积分10
4秒前
高兴的易形完成签到 ,获得积分10
4秒前
123131发布了新的文献求助10
4秒前
背后访风完成签到 ,获得积分10
4秒前
cc发布了新的文献求助10
5秒前
细心青烟完成签到 ,获得积分20
5秒前
luoyulin完成签到,获得积分10
5秒前
5秒前
5秒前
Sun完成签到,获得积分20
5秒前
大马哈鱼完成签到 ,获得积分10
5秒前
露露发布了新的文献求助10
5秒前
5秒前
6秒前
饱满以松发布了新的文献求助10
6秒前
6秒前
6秒前
JX发布了新的文献求助10
6秒前
鱼粥很好完成签到,获得积分10
6秒前
王哪跑12发布了新的文献求助10
7秒前
7秒前
Bingo发布了新的文献求助20
8秒前
蓝胖子完成签到,获得积分20
8秒前
8秒前
8秒前
帅气的奔驰完成签到,获得积分10
8秒前
科研通AI6应助猫的淡淡采纳,获得10
9秒前
我是唐不是傻完成签到,获得积分10
9秒前
温暖砖头完成签到,获得积分10
9秒前
积极紫翠发布了新的文献求助10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助50
10秒前
11秒前
万能图书馆应助kirakira采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403