已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adv-Bot: Realistic adversarial botnet attacks against network intrusion detection systems

对抗制 僵尸网络 计算机科学 逃避(道德) 入侵检测系统 计算机安全 脆弱性(计算) 领域(数学) 恶意软件 对抗性机器学习 多样性(控制论) 人工智能 网络安全 方案(数学) 机器学习 互联网 万维网 生物 数学 数学分析 纯数学 免疫学 免疫系统
作者
Islam Debicha,Benjamin Cochez,Tayeb Kenaza,Thibault Debatty,Jean‐Michel Dricot,Wim Mees
出处
期刊:Computers & Security [Elsevier]
卷期号:129: 103176-103176 被引量:18
标识
DOI:10.1016/j.cose.2023.103176
摘要

Due to the numerous advantages of machine learning (ML) algorithms, many applications now incorporate them. However, many studies in the field of image classification have shown that MLs can be fooled by a variety of adversarial attacks. These attacks take advantage of ML algorithms’ inherent vulnerability. This raises many questions in the cybersecurity field, where a growing number of researchers are recently investigating the feasibility of such attacks against machine learning-based security systems, such as intrusion detection systems. The majority of this research demonstrates that it is possible to fool a model using features extracted from a raw data source, but it does not take into account the real implementation of such attacks, i.e., the reverse transformation from theory to practice. The real implementation of these adversarial attacks would be influenced by various constraints that would make their execution more difficult. As a result, the purpose of this study was to investigate the actual feasibility of adversarial attacks, specifically evasion attacks, against network-based intrusion detection systems (NIDS), demonstrating that it is entirely possible to fool these ML-based IDSs using our proposed adversarial algorithm while assuming as many constraints as possible in a black-box setting. In addition, since it is critical to design defense mechanisms to protect ML-based IDSs against such attacks, a defensive scheme is presented. Realistic botnet traffic traces are used to assess this work. Our goal is to create adversarial botnet traffic that can avoid detection while still performing all of its intended malicious functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
南北发布了新的文献求助30
6秒前
Miao发布了新的文献求助10
6秒前
虚心傲丝发布了新的文献求助10
6秒前
亲爱的安德烈完成签到,获得积分10
9秒前
黄12完成签到,获得积分10
13秒前
南北完成签到,获得积分10
13秒前
彩色莞完成签到 ,获得积分10
15秒前
2220完成签到 ,获得积分10
17秒前
20秒前
虚心傲丝完成签到,获得积分10
23秒前
爆米花应助zhong采纳,获得10
25秒前
黄12发布了新的文献求助10
25秒前
Murphy发布了新的文献求助10
27秒前
隐形曼青应助哈哈哈哈采纳,获得10
28秒前
Miao完成签到,获得积分20
28秒前
SciGPT应助zhong采纳,获得10
33秒前
Marvin完成签到 ,获得积分10
34秒前
隐形曼青应助MDW采纳,获得10
34秒前
桐桐应助恢复出厂设置采纳,获得10
36秒前
落后翠柏完成签到 ,获得积分10
37秒前
咿咿呀呀完成签到,获得积分10
37秒前
泥巴象完成签到 ,获得积分20
39秒前
43秒前
43秒前
敏静发布了新的文献求助10
46秒前
zhong发布了新的文献求助10
46秒前
48秒前
zhong发布了新的文献求助10
48秒前
zhong发布了新的文献求助10
48秒前
49秒前
Murphy完成签到,获得积分10
50秒前
50秒前
今后应助小明采纳,获得10
50秒前
MDW发布了新的文献求助10
52秒前
634301059发布了新的文献求助10
53秒前
54秒前
科研嘉完成签到,获得积分10
56秒前
www268完成签到 ,获得积分10
58秒前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162246
求助须知:如何正确求助?哪些是违规求助? 2813263
关于积分的说明 7899489
捐赠科研通 2472504
什么是DOI,文献DOI怎么找? 1316446
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142