光热治疗
癌症研究
免疫疗法
免疫检查点
免疫系统
封锁
免疫原性
材料科学
CD47型
细胞毒性
免疫学
医学
生物
纳米技术
受体
内科学
体外
生物化学
作者
Kai Guo,Dong Chen,Shuai Ren,Muhammad Rizwan Younis,Zhaogang Teng,Long Jiang Zhang,Zhongqiu Wang,Ying Tian
标识
DOI:10.1021/acsami.2c19790
摘要
Despite the great achievements of immune checkpoint blockade (ICB) therapy on programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) axis, ICB monotherapy still faces obstacles in eradicating solid tumors due to the lack of tumor-associated antigens or tumor-specific cytotoxicity. Photothermal therapy (PTT) is a potential therapeutic modality because it can noninvasively kill tumor cells by thermal ablation and generate both tumor-specific cytotoxicity and immunogenicity, which holds great feasibility to improve the efficiency of ICB by providing complementary immunomodulation. Except for the PD-1/PD-L1 axis, the cluster of differentiation 47 (CD47)/signal regulatory protein alpha (SIRPα) pathway has been considered as a novel strategy of tumor cells to evade the surveillance of macrophages and inactivate the immune response of PD-L1 blockade therapy. Therefore, it is necessary to synergize the antitumor effect of dual-targeting PD-L1 and CD47. Although promising, the application of PD-L1/CD47 bispecific antibodies, especially in combination with PTT, remains a formidable problem, due to the low objective response, activity loss at relatively high temperature, or nonvisualization. Herein, instead of using antibodies, we use MK-8628 (MK) to down-regulate both PD-L1 and CD47 simultaneously through halting the active transcription of oncogene c-MYC, leading to elicitation of the immune response. The hollow polydopamine (HPDA) nanospheres are introduced as a biocompatible nanoplatform with high loading capacity and magnetic resonance imaging (MRI) ability to deliver MK and induce PTT (HPDA@MK). Compared to preinjection, HPDA@MK exhibits the strongest MRI signal at 6 h postintravenous injection to guide the precise combined treatment time. However, due to the local delivery and controlled release of inhibitors, HPDA@MK down-regulates c-MYC/PD-L1/CD47, promotes the activation and recruitment of cytotoxic T cells, regulates the M2 macrophages polarization in tumor sites, and especially boosts the combined therapeutic efficacy. Collectively, our work presents a simple but distinctive approach for c-MYC/PD-L1/CD47-targeted immunotherapy combined with PTT that may provide a desirable and feasible strategy for the treatment of other clinical solid tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI