软土
矿化(土壤科学)
磷
肥料
微生物种群生物学
基因组
土壤微生物学
生物利用度
营养物
肥料
自行车
微生物
土壤肥力
相对物种丰度
营养循环
环境化学
生态学
丰度(生态学)
农学
化学
生物
土壤水分
细菌
生物信息学
遗传学
有机化学
考古
基因
历史
作者
Xiaojing Hu,Haidong Gu,Junjie Liu,Dan Wei,Ping Zhu,Xian Cui,Baoku Zhou,Xueli Chen,Jian Jin,Xiaobing Liu,Guanghua Wang
标识
DOI:10.1016/j.agee.2023.108462
摘要
Microorganisms play essential roles in soil phosphorus (P) cycling and the regulation of P bioavailability, however, genetic information on microbial P cycling in response to nutrient inputs is largely unclear. Here, metagenomic sequencing and genome binning were used to investigate microbial functional traits under chemical and organic fertilization in three long-term field experiments across black soil region of Northeast China. The results revealed that manure amendments strongly affected microbial P cycle-related functional gene patterns, which were significantly and positively correlated with the contents of soil total P (TP) and available P (AP). Manure addition directly increased soil AP concentrations, and indirectly acted through the alterations of microbial functional genes involved in soil P cycling. Specifically, manure amendments consistently decreased abundances of phnC gene and increased gene abundances of phnP, opd, and phoN across three locations, suggesting the potentially inhibition of soil microbial P-uptake and transport and the promotion of soil microbial organic P- mineralization. Manure addition promoted microbial inorganic P-solubilization by enriching the ppa, gcd, and pqqC genes at two out of three locations, while chemical fertilizer (CF) addition slightly stimulated the functional gene abundances involved in microbial P-uptake and transport and P-starvation response regulation. In addition, soil AP content was negatively correlated with the phnC gene abundance but positively correlated with the gene abundances of opd and phoN. Moreover, 23 metagenome-assembled genomes (MAGs) were reconstructed covering all soil samples, all of which contained the phnC gene with the copy numbers varying from 1 to 19. Nevertheless, only bin44 had a negative correlation with soil AP (r = −0.361, P = 0.030) and could be considered as a potential indicator regulating microbial P-uptake and transport. Taken together, manure inputs positively accelerated microbial P-transformations, which was beneficial for the establishment of efficient P management strategies in sustainable-intensive agriculture.
科研通智能强力驱动
Strongly Powered by AbleSci AI