Predicting Cardiotoxicity of Molecules Using Attention-Based Graph Neural Networks

可解释性 心脏毒性 计算机科学 人工神经网络 药品 人工智能 机器学习 毒性 药理学 医学 内科学
作者
Tuan Vinh,Loc Nguyen,Quang H. Trinh,Hoang Nguyen,Binh P. Nguyen
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (6): 1816-1827
标识
DOI:10.1021/acs.jcim.3c01286
摘要

In drug discovery, the search for new and effective medications is often hindered by concerns about toxicity. Numerous promising molecules fail to pass the later phases of drug development due to strict toxicity assessments. This challenge significantly increases the cost, time, and human effort needed to discover new therapeutic molecules. Additionally, a considerable number of drugs already on the market have been withdrawn or re-evaluated because of their unwanted side effects. Among the various types of toxicity, drug-induced heart damage is a severe adverse effect commonly associated with several medications, especially those used in cancer treatments. Although a number of computational approaches have been proposed to identify the cardiotoxicity of molecules, the performance and interpretability of the existing approaches are limited. In our study, we proposed a more effective computational framework to predict the cardiotoxicity of molecules using an attention-based graph neural network. Experimental results indicated that the proposed framework outperformed the other methods. The stability of the model was also confirmed by our experiments. To assist researchers in evaluating the cardiotoxicity of molecules, we have developed an easy-to-use online web server that incorporates our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矫仁瑞发布了新的文献求助10
刚刚
Weilang发布了新的文献求助30
刚刚
余卓奇完成签到,获得积分10
刚刚
大大怪完成签到,获得积分10
1秒前
在水一方应助Change_Jing采纳,获得10
1秒前
大白不白完成签到,获得积分10
1秒前
121完成签到,获得积分10
1秒前
Able驳回了SciGPT应助
2秒前
liaodongjun发布了新的文献求助200
2秒前
2秒前
2秒前
郭德久完成签到 ,获得积分10
3秒前
3秒前
空山新雨发布了新的文献求助10
3秒前
橙子完成签到,获得积分10
3秒前
i十七发布了新的文献求助30
3秒前
坚强幼晴发布了新的文献求助10
3秒前
FashionBoy应助LLL采纳,获得10
3秒前
陶醉大侠完成签到,获得积分10
3秒前
3秒前
issl完成签到,获得积分10
4秒前
小肉包完成签到,获得积分10
4秒前
何相逢完成签到,获得积分0
4秒前
vv1223完成签到,获得积分10
4秒前
英俊的铭应助spy采纳,获得10
5秒前
Giroro_roro发布了新的文献求助10
5秒前
微笑觅柔完成签到,获得积分10
5秒前
wjn发布了新的文献求助10
5秒前
默listening完成签到,获得积分10
5秒前
5秒前
6秒前
斯文败类应助小艳胡采纳,获得10
6秒前
6秒前
12w完成签到,获得积分10
7秒前
哆啦的空间站完成签到,获得积分10
7秒前
MM发布了新的文献求助10
7秒前
迅速采波发布了新的文献求助10
8秒前
zhang_rx完成签到,获得积分20
8秒前
嵇南露完成签到,获得积分10
8秒前
华仔应助哈士轩采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635