Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics

人工神经网络 人工智能 深度学习 计算机科学 物理
作者
Salah A. Faroughi,Nikhil M. Pawar,Célio Fernandes,Maziar Raissi,Subasish Das,Nima K. Kalantari,Seyed Kourosh Mahjour
出处
期刊:Journal of Computing and Information Science in Engineering [ASM International]
卷期号:: 1-45 被引量:15
标识
DOI:10.1115/1.4064449
摘要

Abstract Advancements in computing power have recently made it possible to utilize machine learning and deep learning to push scientific computing forward in a range of disciplines, such as fluid mechanics, solid mechanics, materials science, etc. The incorporation of neural networks is particularly crucial in this hybridization process. Due to their intrinsic architecture, conventional neural networks cannot be successfully trained and scoped when data is sparse, which is the case in many scientific and engineering domains. Nonetheless, neural networks provide a solid foundation to respect physics-driven or knowledge-based constraints during training. Generally speaking, there are three distinct neural network frameworks to enforce the underlying physics: (i) physics-guided neural networks (PgNNs), (ii) physics-informed neural networks (PiNNs), and (iii) physics-encoded neural networks (PeNNs). These methods provide distinct advantages for accelerating the numerical modeling of complex multiscale multi-physics phenomena. In addition, the recent developments in neural operators (NOs) add another dimension to these new simulation paradigms, especially when the real-time prediction of complex multi-physics systems is required. All these models also come with their own unique drawbacks and limitations that call for further fundamental research. This study aims to present a review of the four neural network frameworks (i.e., PgNNs, PiNNs, PeNNs, and NOs) used in scientific computing research. The state-of-the-art architectures and their applications are reviewed, limitations are discussed, and future research opportunities are presented in terms of improving algorithms, considering causalities, expanding applications, and coupling scientific and deep learning solvers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
6秒前
情怀应助2023204306324采纳,获得10
6秒前
7秒前
人生如梦完成签到,获得积分10
7秒前
大力雁菡发布了新的文献求助10
7秒前
WxYzH完成签到,获得积分10
8秒前
8秒前
文静翅膀发布了新的文献求助10
8秒前
FashionBoy应助jersey采纳,获得10
9秒前
啾啾发布了新的文献求助10
9秒前
WanchengHu完成签到,获得积分10
10秒前
10秒前
maguodrgon发布了新的文献求助10
11秒前
贝壳完成签到,获得积分10
12秒前
一只呆果蝇完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
14秒前
15秒前
英俊的铭应助等待的网络采纳,获得10
15秒前
17秒前
17秒前
AU发布了新的文献求助30
18秒前
Baili应助健忘的飞雪采纳,获得10
18秒前
19秒前
啾啾完成签到,获得积分10
19秒前
2023204306324发布了新的文献求助10
20秒前
刻苦若冰发布了新的文献求助10
20秒前
Mess完成签到,获得积分10
22秒前
小高发布了新的文献求助30
22秒前
颜倾发布了新的文献求助10
23秒前
闪闪静槐发布了新的文献求助10
23秒前
sunshinegirl完成签到,获得积分20
23秒前
24秒前
JamesPei应助AU采纳,获得10
25秒前
NexusExplorer应助哇咔咔采纳,获得10
25秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993490
求助须知:如何正确求助?哪些是违规求助? 3534168
关于积分的说明 11264831
捐赠科研通 3274008
什么是DOI,文献DOI怎么找? 1806220
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809662