清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Urbanization and weather dynamics co-dominated the spatial-temporal variation in pCO2 and CO2 fluxes in small montanic rivers draining diverse landscapes

城市化 环境科学 空间变异性 生物地球化学循环 空间生态学 分水岭 水文学(农业) 温室气体 空间分布 自然地理学 地理 生态学 海洋学 地质学 生物 遥感 统计 机器学习 计算机科学 数学 岩土工程
作者
Zhaoyin Qing,Xiaofeng Wang,Xian‐Xiang Li,Jian Chen,Yi Yang,Ting Zhou,Tingting Liu,Shuangshuang Liu,Yafang Huang,Yixin He
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:351: 119884-119884 被引量:1
标识
DOI:10.1016/j.jenvman.2023.119884
摘要

Rivers have been widely reported as important CO2 emitters to the atmosphere. Rapid urbanization has a profound impact on the carbon biogeochemical cycle of rivers, leading to enhanced riverine CO2 evasions. However, it is still unclear whether the spatial–temporal patterns of CO2 emissions in the rivers draining diverse landscapes dominated by urbanization were stable, especially in mountainous areas. This study carried out a two-year investigation of water environmental hydrochemistry in three small mountainous rivers draining urban, suburban and rural landscapes in southwestern China, and CO2 partial pressure (pCO2) and fluxes (fCO2) in surface water were measured using headspace equilibrium method and classical thin boundary layer model. The average pCO2 and fCO2 in the highly urbanized river were of 4783.6 μatm and 700.0 mmol m−2 d−1, conspicuously higher than those in the rural river (1525.9 μatm and 123.2 mmol m−2 d−1), and the suburban river presented a moderate level (3114.2 μatm and 261.2 mmol m−2 d−1). It provided even clearer evidence that watershed urbanization could remarkably enhance riverine CO2 emissions. More importantly, the three rivers presented different longitudinal variations in pCO2, implying diversified spatial patterns of riverine CO2 emissions as a result of urbanization. The urban land can explain 49.6–69.1% of the total spatial variation in pCO2 at the reach scale, indicating that urban land distribution indirectly dominated the longitudinal pattern of riverine pCO2 and fCO2. pCO2 and fCO2 in the three rivers showed similar temporal variability with higher warm-rainy seasons and lower dry seasons, which are significantly controlled by weather dynamics, including monthly temperature and precipitation, but seem to be impervious to watershed urbanization. High temperature-stimulated microorganisms metabolism and riched-CO2 runoff input lead much higher pCO2 in warm-rainy seasons. However, it showed more sensitivity of pCO2 to monthly weather dynamics in urbanized rivers than that in rural rivers, and warm-rainy seasons showed hot moments of CO2 evasion for urban rivers. TOC, DOC, TN, pH and DO were the main controls on pCO2 in the urban and suburban rivers, while only pH and DO were connected with pCO2 in the rural rivers. This indicated differential controls and regulatory processes of pCO2 in the rivers draining diverse landscapes. Furthermore, it suggested that pCO2 calculated by the pH-total alkalinity method would obviously overestimate pCO2 in urban polluted rivers due to the inevitable influence of non-carbonate alkalinity, and thus, a relatively conservative headspace method should be recommended. We highlighted that urbanization and weather dynamics co-dominated the multiformity and uncertainty in spatial–temporal patterns of riverine CO2 evasions, which should be considered when modeling CO2 dynamics in urbanized rivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
11秒前
怕孤独的访云完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
李新光完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
34秒前
lilylwy完成签到 ,获得积分0
37秒前
迈克老狼完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
49秒前
认真搞科研啦完成签到,获得积分10
51秒前
666完成签到,获得积分10
55秒前
量子星尘发布了新的文献求助10
56秒前
熊熊出击完成签到 ,获得积分10
59秒前
净禅完成签到 ,获得积分10
1分钟前
Dongjie完成签到 ,获得积分10
1分钟前
pandarion完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小布完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
丘比特应助科研通管家采纳,获得20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
imi完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
vvvaee完成签到 ,获得积分10
2分钟前
huiluowork完成签到 ,获得积分10
2分钟前
谨慎鹏涛完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hiter发布了新的文献求助30
2分钟前
2分钟前
琪琪完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
无情夏寒完成签到 ,获得积分10
3分钟前
xiao完成签到 ,获得积分10
3分钟前
Luv_JoeyZhang完成签到 ,获得积分10
3分钟前
XIE完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666449
求助须知:如何正确求助?哪些是违规求助? 3225448
关于积分的说明 9763038
捐赠科研通 2935282
什么是DOI,文献DOI怎么找? 1607593
邀请新用户注册赠送积分活动 759271
科研通“疑难数据库(出版商)”最低求助积分说明 735188