Dual residual attention network for image denoising

计算机科学 降噪 人工智能 残余物 卷积神经网络 块(置换群论) 特征(语言学) 噪音(视频) 模式识别(心理学) 计算机视觉 图像(数学) 算法 数学 几何学 语言学 哲学
作者
Wencong Wu,Shijie Liu,Yuelong Xia,Yungang Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110291-110291 被引量:35
标识
DOI:10.1016/j.patcog.2024.110291
摘要

In image denoising, deep convolutional neural networks (CNNs) can obtain favorable performance on removing spatially invariant noise. However, many of these networks cannot perform well on removing the real noise (i.e. spatially variant noise) that is generated during image acquisition or transmission, which severely impedes their application in practical image denoising tasks. In this paper, we propose a novel Dual-branch Residual Attention Network (DRANet) for image denoising, which has both the merits of a wide model architecture and the attention-guided feature learning. The proposed DRANet includes two different parallel branches, which can capture complementary features to enhance the learning ability of the model. We designed a new residual attention block (RAB) and a novel hybrid dilated residual attention block (HDRAB) for the upper and lower branches, respectively. The RAB and HDRAB can capture rich local features through multiple skip connections between different convolutional layers, and the unimportant features can be dropped. Meanwhile, the long skip connections in each branch and the global feature fusion between the two parallel branches can effectively capture the global features as well. Extensive experiments demonstrate that compared with other state-of-the-art denoising methods, our DRANet can produce competitive denoising performance both on the synthetic and real-world noise removal. The code for DRANet is accessible at https://github.com/WenCongWu/DRANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liangyuting完成签到,获得积分10
1秒前
是毛果芸香碱完成签到,获得积分10
1秒前
千暮完成签到,获得积分10
1秒前
1秒前
大个应助mmssdd采纳,获得10
1秒前
Whisper完成签到 ,获得积分10
1秒前
Rao发布了新的文献求助10
2秒前
PPP完成签到,获得积分10
2秒前
2秒前
思源应助顺心的翠丝采纳,获得10
3秒前
orixero应助scholar丨崔采纳,获得10
3秒前
李爱国应助Esther采纳,获得10
3秒前
深情安青应助leisurelft采纳,获得10
4秒前
ddd完成签到,获得积分10
4秒前
LQQ发布了新的文献求助10
4秒前
4秒前
852应助有魅力小刺猬采纳,获得10
5秒前
星辰大海应助xinchengzhu采纳,获得10
5秒前
仁爱的小懒猪完成签到 ,获得积分10
5秒前
6秒前
May发布了新的文献求助10
6秒前
6秒前
ly完成签到,获得积分20
6秒前
所所应助愉快的芒果采纳,获得10
7秒前
Coco完成签到,获得积分10
7秒前
7秒前
木桶饭团完成签到,获得积分10
7秒前
myt发布了新的文献求助10
7秒前
埃特纳氏完成签到 ,获得积分10
8秒前
vic303发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
国王的指环1111完成签到,获得积分10
9秒前
我是老大应助呵浅陌采纳,获得10
10秒前
jliu发布了新的文献求助10
10秒前
10秒前
Chochee完成签到,获得积分10
11秒前
11秒前
13秒前
打打应助会飞的猪采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406