Dual residual attention network for image denoising

计算机科学 降噪 人工智能 残余物 卷积神经网络 块(置换群论) 特征(语言学) 噪音(视频) 模式识别(心理学) 计算机视觉 图像(数学) 算法 数学 语言学 哲学 几何学
作者
Wencong Wu,Shijie Liu,Yuelong Xia,Yungang Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110291-110291 被引量:111
标识
DOI:10.1016/j.patcog.2024.110291
摘要

In image denoising, deep convolutional neural networks (CNNs) can obtain favorable performance on removing spatially invariant noise. However, many of these networks cannot perform well on removing the real noise (i.e. spatially variant noise) that is generated during image acquisition or transmission, which severely impedes their application in practical image denoising tasks. In this paper, we propose a novel Dual-branch Residual Attention Network (DRANet) for image denoising, which has both the merits of a wide model architecture and the attention-guided feature learning. The proposed DRANet includes two different parallel branches, which can capture complementary features to enhance the learning ability of the model. We designed a new residual attention block (RAB) and a novel hybrid dilated residual attention block (HDRAB) for the upper and lower branches, respectively. The RAB and HDRAB can capture rich local features through multiple skip connections between different convolutional layers, and the unimportant features can be dropped. Meanwhile, the long skip connections in each branch and the global feature fusion between the two parallel branches can effectively capture the global features as well. Extensive experiments demonstrate that compared with other state-of-the-art denoising methods, our DRANet can produce competitive denoising performance both on the synthetic and real-world noise removal. The code for DRANet is accessible at https://github.com/WenCongWu/DRANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的太阳完成签到,获得积分10
2秒前
coldbee完成签到,获得积分10
2秒前
purplelove完成签到 ,获得积分10
3秒前
YT发布了新的文献求助10
4秒前
科研通AI6应助高铅酸采纳,获得10
4秒前
来活完成签到,获得积分10
5秒前
小马甲应助云上的苍茫采纳,获得10
5秒前
gabel完成签到 ,获得积分10
6秒前
7秒前
曹毅凯完成签到,获得积分10
7秒前
着急的问凝关注了科研通微信公众号
7秒前
hhhh完成签到,获得积分10
8秒前
zy完成签到,获得积分10
8秒前
10秒前
10秒前
赫灵竹完成签到,获得积分10
10秒前
ye1121完成签到,获得积分10
12秒前
SciGPT应助咸鱼饭团采纳,获得10
12秒前
Vincent1990发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
15秒前
16秒前
斯文听筠发布了新的文献求助10
16秒前
YT完成签到,获得积分10
16秒前
Akim应助zhaco采纳,获得10
16秒前
lww发布了新的文献求助30
18秒前
HBin完成签到,获得积分10
18秒前
浑灵安完成签到 ,获得积分10
19秒前
19秒前
zhaozhao发布了新的文献求助10
20秒前
ceceliaerr完成签到,获得积分10
21秒前
18062677029发布了新的文献求助10
21秒前
CipherSage应助卡乐瑞咩吹可采纳,获得10
22秒前
23秒前
研友_ngqxV8完成签到,获得积分0
23秒前
krislan完成签到,获得积分10
24秒前
25秒前
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227053
求助须知:如何正确求助?哪些是违规求助? 4398242
关于积分的说明 13688816
捐赠科研通 4262916
什么是DOI,文献DOI怎么找? 2339413
邀请新用户注册赠送积分活动 1336749
关于科研通互助平台的介绍 1292800