Dual residual attention network for image denoising

计算机科学 降噪 人工智能 残余物 卷积神经网络 块(置换群论) 特征(语言学) 噪音(视频) 模式识别(心理学) 计算机视觉 图像(数学) 算法 数学 几何学 语言学 哲学
作者
Wencong Wu,Shijie Liu,Yuelong Xia,Yungang Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110291-110291 被引量:59
标识
DOI:10.1016/j.patcog.2024.110291
摘要

In image denoising, deep convolutional neural networks (CNNs) can obtain favorable performance on removing spatially invariant noise. However, many of these networks cannot perform well on removing the real noise (i.e. spatially variant noise) that is generated during image acquisition or transmission, which severely impedes their application in practical image denoising tasks. In this paper, we propose a novel Dual-branch Residual Attention Network (DRANet) for image denoising, which has both the merits of a wide model architecture and the attention-guided feature learning. The proposed DRANet includes two different parallel branches, which can capture complementary features to enhance the learning ability of the model. We designed a new residual attention block (RAB) and a novel hybrid dilated residual attention block (HDRAB) for the upper and lower branches, respectively. The RAB and HDRAB can capture rich local features through multiple skip connections between different convolutional layers, and the unimportant features can be dropped. Meanwhile, the long skip connections in each branch and the global feature fusion between the two parallel branches can effectively capture the global features as well. Extensive experiments demonstrate that compared with other state-of-the-art denoising methods, our DRANet can produce competitive denoising performance both on the synthetic and real-world noise removal. The code for DRANet is accessible at https://github.com/WenCongWu/DRANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbhk完成签到,获得积分10
1秒前
1秒前
zyh完成签到,获得积分10
1秒前
2秒前
一米阳光完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
ding应助c_Yeats采纳,获得10
4秒前
4秒前
chengxiping完成签到,获得积分10
5秒前
Weiwei应助yc采纳,获得10
5秒前
顾矜应助YY采纳,获得10
5秒前
yuyukeke发布了新的文献求助10
5秒前
温柔的戎完成签到,获得积分10
6秒前
caozhi发布了新的文献求助10
6秒前
6秒前
小蘑菇应助Allen采纳,获得10
6秒前
z7486完成签到,获得积分10
7秒前
渝爱MM完成签到,获得积分10
7秒前
Nniu发布了新的文献求助10
7秒前
Mark0001完成签到,获得积分10
7秒前
一米阳光发布了新的文献求助10
8秒前
彭于晏应助甜甜的觅夏采纳,获得10
8秒前
8秒前
8秒前
mncvjs发布了新的文献求助10
9秒前
飞快的月亮完成签到 ,获得积分10
9秒前
欧拉不拉发布了新的文献求助10
9秒前
Birdy发布了新的文献求助10
10秒前
LI发布了新的文献求助10
10秒前
10秒前
ppt完成签到,获得积分10
11秒前
MewZero完成签到 ,获得积分10
12秒前
张张发布了新的文献求助10
12秒前
12秒前
不一完成签到,获得积分10
13秒前
三叶草发布了新的文献求助10
13秒前
lxl发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558607
求助须知:如何正确求助?哪些是违规求助? 3985544
关于积分的说明 12339263
捐赠科研通 3656005
什么是DOI,文献DOI怎么找? 2014096
邀请新用户注册赠送积分活动 1048954
科研通“疑难数据库(出版商)”最低求助积分说明 937316