Unleashing the potential of Ru/FeCo-MOF in water splitting and supercapacitors through Morphology and electronic structure control

过电位 超级电容器 材料科学 分解水 析氧 纳米技术 纳米材料 化学工程 金属有机骨架 催化作用 电容 电极 化学 电化学 物理化学 吸附 生物化学 光催化 工程类
作者
Chao Feng,Qi An,Qiang Zhang,Lijun Huang,Nana Wang,Xiao Zhang,Yanchao Xu,Meng Xie,Ran Wang,Yang Jiao,Jianrong Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:55: 189-198 被引量:14
标识
DOI:10.1016/j.ijhydene.2023.11.134
摘要

Rational design and structural regulation of nanomaterials play a vital role in advancing clean energy and energy storage technologies. Metal-organic frameworks (MOFs) are highly regarded as ideal bi-functional electrocatalytic materials for overall water splitting and supercapacitors applications. However, the utilization of MOF materials in practical applications still presents significant challenges due to their inherent limitations in electrical conductivity and morphology control. In this study, we successfully synthesized FeCo-MOF material and effectively regulated its morphology and electronic structure by varying the amount of RuCl3. and its active surface area was increased. The results show that the addition of Ru can not only introduce new metal active sites, but also shorten the path of ion diffusion. Furthermore, it can establish electronic coupling with the Fe and Co active sites interface, thereby tuning their electronic structures. The optimized 0.04 Ru/FeCo-MOF catalyst displayed remarkably low overpotential and high activity in both oxygen evolution reaction (OER) (η50 = 309 mV) and hydrogen evolution reaction (HER) (η10 = 180 mV). In a two-electrode system, the 0.04 Ru/FeCo-MOF||0.04 Ru/FeCo-MOF drived 10 mA cm−2 current density only need low voltage of 1.498 V. Moreover, this material also exhibits a high specific capacitance of 8600 mF cm−2 and excellent cycle stability in supercapacitor applications (88.9%). This synthesis strategy encompassing the regulation of both morphology and electronic structure presents a distinctive perspective for MOF design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
娇气的笑蓝完成签到,获得积分10
1秒前
coke发布了新的文献求助50
1秒前
1秒前
华仔应助敬之采纳,获得10
1秒前
CBWKEYANTONG123完成签到,获得积分10
1秒前
大个应助牛肉汉堡采纳,获得10
1秒前
炸鸡完成签到,获得积分10
2秒前
纸上雪完成签到,获得积分10
2秒前
勤劳哈密瓜完成签到,获得积分10
3秒前
3秒前
luanzh完成签到,获得积分10
3秒前
PZ完成签到,获得积分10
3秒前
xiaoD完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
sntyc完成签到 ,获得积分10
5秒前
Ava应助于林渤采纳,获得10
5秒前
5秒前
小汪快跑发布了新的文献求助10
6秒前
海绵宝宝完成签到,获得积分10
6秒前
Maestro_S完成签到,获得积分0
6秒前
可乐完成签到,获得积分20
6秒前
可爱的梦柏完成签到,获得积分10
6秒前
7秒前
困困发布了新的文献求助10
7秒前
机灵水卉发布了新的文献求助10
7秒前
7秒前
xiaochenxiaochen完成签到,获得积分10
7秒前
砰砰彭完成签到,获得积分10
7秒前
7秒前
lu完成签到 ,获得积分10
8秒前
pw完成签到 ,获得积分10
8秒前
cyy1226发布了新的文献求助10
8秒前
唠叨的夏烟完成签到 ,获得积分10
8秒前
wanci应助四月一日采纳,获得10
9秒前
Young发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997