Unleashing the potential of Ru/FeCo-MOF in water splitting and supercapacitors through Morphology and electronic structure control

过电位 超级电容器 材料科学 分解水 析氧 纳米技术 纳米材料 化学工程 金属有机骨架 催化作用 电容 电极 化学 电化学 物理化学 吸附 生物化学 光催化 工程类
作者
Chao Feng,Qi An,Qiang Zhang,Lijun Huang,Nana Wang,Xiao Zhang,Yanchao Xu,Meng Xie,Ran Wang,Yang Jiao,Jianrong Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:55: 189-198 被引量:14
标识
DOI:10.1016/j.ijhydene.2023.11.134
摘要

Rational design and structural regulation of nanomaterials play a vital role in advancing clean energy and energy storage technologies. Metal-organic frameworks (MOFs) are highly regarded as ideal bi-functional electrocatalytic materials for overall water splitting and supercapacitors applications. However, the utilization of MOF materials in practical applications still presents significant challenges due to their inherent limitations in electrical conductivity and morphology control. In this study, we successfully synthesized FeCo-MOF material and effectively regulated its morphology and electronic structure by varying the amount of RuCl3. and its active surface area was increased. The results show that the addition of Ru can not only introduce new metal active sites, but also shorten the path of ion diffusion. Furthermore, it can establish electronic coupling with the Fe and Co active sites interface, thereby tuning their electronic structures. The optimized 0.04 Ru/FeCo-MOF catalyst displayed remarkably low overpotential and high activity in both oxygen evolution reaction (OER) (η50 = 309 mV) and hydrogen evolution reaction (HER) (η10 = 180 mV). In a two-electrode system, the 0.04 Ru/FeCo-MOF||0.04 Ru/FeCo-MOF drived 10 mA cm−2 current density only need low voltage of 1.498 V. Moreover, this material also exhibits a high specific capacitance of 8600 mF cm−2 and excellent cycle stability in supercapacitor applications (88.9%). This synthesis strategy encompassing the regulation of both morphology and electronic structure presents a distinctive perspective for MOF design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ff发布了新的文献求助10
刚刚
斯文败类应助安详的凝天采纳,获得10
刚刚
刚刚
常大美女完成签到,获得积分10
1秒前
深情安青应助自然的岱周采纳,获得10
2秒前
沉静的黎昕完成签到,获得积分10
2秒前
丘比特应助称心的乘云采纳,获得10
2秒前
4秒前
阔达凝天发布了新的文献求助10
4秒前
斯文败类应助万青云采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
壮观艳完成签到,获得积分10
7秒前
7秒前
7秒前
JZ完成签到,获得积分10
8秒前
Shoshana完成签到,获得积分10
9秒前
9秒前
甜北枳完成签到,获得积分10
10秒前
承乐发布了新的文献求助10
10秒前
珊珊发布了新的文献求助10
10秒前
简单幸福完成签到 ,获得积分0
10秒前
12秒前
无花果应助adamwang采纳,获得10
12秒前
12秒前
HCT发布了新的文献求助10
12秒前
14秒前
Kondo发布了新的文献求助10
15秒前
小鱼完成签到 ,获得积分10
16秒前
一一应助有意义采纳,获得10
16秒前
16秒前
橘猫完成签到 ,获得积分10
16秒前
16秒前
16秒前
17秒前
求求你帮帮我完成签到,获得积分10
17秒前
共享精神应助珊珊采纳,获得10
17秒前
共享精神应助禹宛白采纳,获得10
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802