过电位
超级电容器
材料科学
分解水
析氧
纳米技术
纳米材料
化学工程
金属有机骨架
催化作用
电容
电极
化学
电化学
物理化学
吸附
生物化学
光催化
工程类
作者
Chao Feng,Qi An,Qiang Zhang,Lijun Huang,Nana Wang,Xiao Zhang,Yanchao Xu,Meng Xie,Ran Wang,Yang Jiao,Jianrong Chen
标识
DOI:10.1016/j.ijhydene.2023.11.134
摘要
Rational design and structural regulation of nanomaterials play a vital role in advancing clean energy and energy storage technologies. Metal-organic frameworks (MOFs) are highly regarded as ideal bi-functional electrocatalytic materials for overall water splitting and supercapacitors applications. However, the utilization of MOF materials in practical applications still presents significant challenges due to their inherent limitations in electrical conductivity and morphology control. In this study, we successfully synthesized FeCo-MOF material and effectively regulated its morphology and electronic structure by varying the amount of RuCl3. and its active surface area was increased. The results show that the addition of Ru can not only introduce new metal active sites, but also shorten the path of ion diffusion. Furthermore, it can establish electronic coupling with the Fe and Co active sites interface, thereby tuning their electronic structures. The optimized 0.04 Ru/FeCo-MOF catalyst displayed remarkably low overpotential and high activity in both oxygen evolution reaction (OER) (η50 = 309 mV) and hydrogen evolution reaction (HER) (η10 = 180 mV). In a two-electrode system, the 0.04 Ru/FeCo-MOF||0.04 Ru/FeCo-MOF drived 10 mA cm−2 current density only need low voltage of 1.498 V. Moreover, this material also exhibits a high specific capacitance of 8600 mF cm−2 and excellent cycle stability in supercapacitor applications (88.9%). This synthesis strategy encompassing the regulation of both morphology and electronic structure presents a distinctive perspective for MOF design.
科研通智能强力驱动
Strongly Powered by AbleSci AI