Unleashing the potential of Ru/FeCo-MOF in water splitting and supercapacitors through Morphology and electronic structure control

过电位 超级电容器 材料科学 分解水 析氧 纳米技术 纳米材料 化学工程 金属有机骨架 催化作用 电容 电极 化学 电化学 物理化学 吸附 生物化学 光催化 工程类
作者
Chao Feng,Qi An,Qiang Zhang,Lijun Huang,Nana Wang,Xiao Zhang,Yanchao Xu,Meng Xie,Ran Wang,Yang Jiao,Jianrong Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:55: 189-198 被引量:14
标识
DOI:10.1016/j.ijhydene.2023.11.134
摘要

Rational design and structural regulation of nanomaterials play a vital role in advancing clean energy and energy storage technologies. Metal-organic frameworks (MOFs) are highly regarded as ideal bi-functional electrocatalytic materials for overall water splitting and supercapacitors applications. However, the utilization of MOF materials in practical applications still presents significant challenges due to their inherent limitations in electrical conductivity and morphology control. In this study, we successfully synthesized FeCo-MOF material and effectively regulated its morphology and electronic structure by varying the amount of RuCl3. and its active surface area was increased. The results show that the addition of Ru can not only introduce new metal active sites, but also shorten the path of ion diffusion. Furthermore, it can establish electronic coupling with the Fe and Co active sites interface, thereby tuning their electronic structures. The optimized 0.04 Ru/FeCo-MOF catalyst displayed remarkably low overpotential and high activity in both oxygen evolution reaction (OER) (η50 = 309 mV) and hydrogen evolution reaction (HER) (η10 = 180 mV). In a two-electrode system, the 0.04 Ru/FeCo-MOF||0.04 Ru/FeCo-MOF drived 10 mA cm−2 current density only need low voltage of 1.498 V. Moreover, this material also exhibits a high specific capacitance of 8600 mF cm−2 and excellent cycle stability in supercapacitor applications (88.9%). This synthesis strategy encompassing the regulation of both morphology and electronic structure presents a distinctive perspective for MOF design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
221完成签到 ,获得积分10
刚刚
hhhhh发布了新的文献求助10
1秒前
1秒前
1秒前
auguste完成签到,获得积分10
1秒前
海岸发布了新的文献求助10
1秒前
我是大兴发布了新的文献求助10
2秒前
柳劲南完成签到,获得积分10
5秒前
5秒前
5秒前
Hammery完成签到,获得积分10
5秒前
5秒前
6秒前
黑粉头头发布了新的文献求助10
6秒前
紫薇发布了新的文献求助10
6秒前
7秒前
归尘发布了新的文献求助10
8秒前
寒冷猫咪发布了新的文献求助10
8秒前
不知道发布了新的文献求助10
8秒前
无花果应助浩浩采纳,获得10
8秒前
9秒前
逸风望发布了新的文献求助10
9秒前
能干吐司完成签到,获得积分20
10秒前
Gauss应助ZYP采纳,获得30
10秒前
asdfzxcv应助愉快乐瑶采纳,获得10
10秒前
11秒前
12秒前
12秒前
柳劲南发布了新的文献求助10
13秒前
dian完成签到,获得积分10
13秒前
SHADY592发布了新的文献求助10
14秒前
14秒前
刘静完成签到,获得积分10
15秒前
16秒前
学吧发布了新的文献求助10
16秒前
赘婿应助jjjjchou采纳,获得10
17秒前
18秒前
19秒前
善学以致用应助NANA采纳,获得30
19秒前
归尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513