A personalized probabilistic approach to ovarian cancer diagnostics

医学 卵巢癌 概率逻辑 癌症 肿瘤科 医学物理学 妇科 内科学 人工智能 计算机科学
作者
Dongjo Ban,Stephen N. Housley,Lilya V. Matyunina,Laura McDonald,Victoria L. Bae‐Jump,Benedict B. Benigno,Jeffrey Skolnick,John F. McDonald
出处
期刊:Gynecologic Oncology [Elsevier]
卷期号:182: 168-175
标识
DOI:10.1016/j.ygyno.2023.12.030
摘要

The identification/development of a machine learning-based classifier that utilizes metabolic profiles of serum samples to accurately identify individuals with ovarian cancer.Serum samples collected from 431 ovarian cancer patients and 133 normal women at four geographic locations were analyzed by mass spectrometry. Reliable metabolites were identified using recursive feature elimination coupled with repeated cross-validation and used to develop a consensus classifier able to distinguish cancer from non-cancer. The probabilities assigned to individuals by the model were used to create a clinical tool that assigns a likelihood that an individual patient sample is cancer or normal.Our consensus classification model is able to distinguish cancer from control samples with 93% accuracy. The frequency distribution of individual patient scores was used to develop a clinical tool that assigns a likelihood that an individual patient does or does not have cancer.An integrative approach using metabolomic profiles and machine learning-based classifiers has been employed to develop a clinical tool that assigns a probability that an individual patient does or does not have ovarian cancer. This personalized/probabilistic approach to cancer diagnostics is more clinically informative and accurate than traditional binary (yes/no) tests and represents a promising new direction in the early detection of ovarian cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帆蚌侠发布了新的文献求助10
刚刚
xy发布了新的文献求助10
刚刚
2秒前
3秒前
5秒前
狂野飞柏完成签到 ,获得积分10
5秒前
6秒前
莳柒完成签到 ,获得积分10
7秒前
8秒前
魔幻的雁完成签到 ,获得积分10
8秒前
julia应助科研通管家采纳,获得20
8秒前
so000应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
所所应助科研通管家采纳,获得10
8秒前
dxm应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
孤独的金针菇完成签到,获得积分10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
丰丰应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
hbb发布了新的文献求助10
9秒前
沙隆巴斯发布了新的文献求助10
9秒前
JamesPei应助江思瑜采纳,获得10
11秒前
莳柒关注了科研通微信公众号
11秒前
JXZZ完成签到,获得积分10
11秒前
11秒前
烟花应助令狐双采纳,获得10
12秒前
13秒前
14秒前
勇敢的心发布了新的文献求助10
14秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461806
求助须知:如何正确求助?哪些是违规求助? 3055500
关于积分的说明 9048149
捐赠科研通 2745215
什么是DOI,文献DOI怎么找? 1506088
科研通“疑难数据库(出版商)”最低求助积分说明 695974
邀请新用户注册赠送积分活动 695472