已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semantic segmentation of deep learning remote sensing images based on band combination principle: Application in urban planning and land use

计算机科学 分割 人工智能 深度学习 城市规划 遥感 计算机视觉 土木工程 地质学 工程类
作者
Peiyan Jia,Chen Chen,Delong Zhang,Yulong Sang,Lei Zhang
出处
期刊:Computer Communications [Elsevier]
卷期号:217: 97-106 被引量:11
标识
DOI:10.1016/j.comcom.2024.01.032
摘要

This study investigates the relevance of semantic segmentation of remote sensing images in urban planning and land use. We introduce a novel deep learning model that leverages the principle of band combination in remote sensing images to enhance the efficiency and accuracy of semantic segmentation. Our research focuses not only on advancing the segmentation capabilities of remote sensing images but also on applying this technology in urban planning and land use to foster sustainable development in smart cities. By integrating the band combination principle into the convolution operation, our approach improves feature extraction, thereby enhancing the quality of semantic segmentation in remote sensing images. This method outperforms traditional remote sensing image analysis techniques by combining automatic feature learning and the generalization capabilities of deep learning, thereby improving the segmentation model's performance. A unique aspect of this study is the direct application of remote sensing image segmentation in urban planning and land use. Our model accurately identifies various land uses such as residential, commercial, and industrial areas, and tracks land-use change trends, aiding urban planners in future development planning. Compared to conventional methods, our model significantly reduces training time and increases computational efficiency under identical training conditions. Experimental comparisons and analyses reveal that, within the same training duration, our model's accuracy surpasses that of similar models by 10%–15%. On the ISPRS dataset, our model achieved a segmentation accuracy of 82.43% for building surfaces, and 76.54% for trees. In scenarios with relatively uniform reflective surfaces, our model outperforms similar models by approximately 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白的听寒完成签到 ,获得积分10
刚刚
归尘发布了新的文献求助10
1秒前
西瓜啵啵完成签到,获得积分10
2秒前
2秒前
6秒前
打打应助Strike采纳,获得10
9秒前
良药发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
15秒前
爱科研的小虞完成签到 ,获得积分10
15秒前
Dayton完成签到,获得积分10
15秒前
无奈书包发布了新的文献求助10
18秒前
11uLt7完成签到 ,获得积分10
18秒前
18秒前
归尘发布了新的文献求助10
18秒前
喜气洋洋发布了新的文献求助10
19秒前
大渡河完成签到,获得积分10
19秒前
19秒前
21秒前
光之剑完成签到,获得积分10
21秒前
24秒前
发文章完成签到,获得积分10
25秒前
wlnhyF发布了新的文献求助10
25秒前
炜wei完成签到,获得积分10
25秒前
Tanyang应助薄荷岛1采纳,获得10
27秒前
27秒前
27秒前
顾矜应助无奈书包采纳,获得10
29秒前
元水云发布了新的文献求助10
30秒前
Strike发布了新的文献求助10
30秒前
周冬利发布了新的文献求助10
31秒前
辉hui发布了新的文献求助20
32秒前
errui发布了新的文献求助10
32秒前
草莓雪酪完成签到 ,获得积分10
32秒前
白宝箱发布了新的文献求助10
38秒前
娟娟完成签到 ,获得积分10
41秒前
hanjja发布了新的文献求助10
41秒前
42秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491104
求助须知:如何正确求助?哪些是违规求助? 3077781
关于积分的说明 9150387
捐赠科研通 2770232
什么是DOI,文献DOI怎么找? 1520217
邀请新用户注册赠送积分活动 704513
科研通“疑难数据库(出版商)”最低求助积分说明 702196