Semantic segmentation of deep learning remote sensing images based on band combination principle: Application in urban planning and land use

计算机科学 分割 人工智能 深度学习 城市规划 遥感 计算机视觉 土木工程 地质学 工程类
作者
Peiyan Jia,Chen Chen,Delong Zhang,Yulong Sang,Lei Zhang
出处
期刊:Computer Communications [Elsevier]
卷期号:217: 97-106 被引量:18
标识
DOI:10.1016/j.comcom.2024.01.032
摘要

This study investigates the relevance of semantic segmentation of remote sensing images in urban planning and land use. We introduce a novel deep learning model that leverages the principle of band combination in remote sensing images to enhance the efficiency and accuracy of semantic segmentation. Our research focuses not only on advancing the segmentation capabilities of remote sensing images but also on applying this technology in urban planning and land use to foster sustainable development in smart cities. By integrating the band combination principle into the convolution operation, our approach improves feature extraction, thereby enhancing the quality of semantic segmentation in remote sensing images. This method outperforms traditional remote sensing image analysis techniques by combining automatic feature learning and the generalization capabilities of deep learning, thereby improving the segmentation model's performance. A unique aspect of this study is the direct application of remote sensing image segmentation in urban planning and land use. Our model accurately identifies various land uses such as residential, commercial, and industrial areas, and tracks land-use change trends, aiding urban planners in future development planning. Compared to conventional methods, our model significantly reduces training time and increases computational efficiency under identical training conditions. Experimental comparisons and analyses reveal that, within the same training duration, our model's accuracy surpasses that of similar models by 10%–15%. On the ISPRS dataset, our model achieved a segmentation accuracy of 82.43% for building surfaces, and 76.54% for trees. In scenarios with relatively uniform reflective surfaces, our model outperforms similar models by approximately 10%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想说完成签到,获得积分10
刚刚
北冰洋的夜晚An完成签到,获得积分10
刚刚
燕荣完成签到 ,获得积分10
刚刚
zss完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
娇娇发布了新的文献求助10
1秒前
King强完成签到,获得积分10
1秒前
Zhaowx完成签到,获得积分10
3秒前
caiweihong完成签到 ,获得积分10
3秒前
4秒前
adagio完成签到,获得积分10
4秒前
豆腐完成签到,获得积分10
4秒前
1101592875完成签到,获得积分10
4秒前
luo完成签到 ,获得积分10
4秒前
太阳花完成签到,获得积分10
6秒前
shouyi886完成签到,获得积分10
6秒前
cx完成签到,获得积分10
6秒前
露露完成签到,获得积分20
6秒前
jun完成签到,获得积分10
6秒前
暴躁的冰兰完成签到 ,获得积分10
7秒前
朱孟研应助聪明的宛菡采纳,获得10
7秒前
123123完成签到 ,获得积分10
8秒前
orixero应助我是笨蛋采纳,获得30
8秒前
留白完成签到,获得积分10
8秒前
复杂平凡完成签到,获得积分10
9秒前
terryok完成签到 ,获得积分10
9秒前
liu完成签到,获得积分10
9秒前
fd163c给fd163c的求助进行了留言
13秒前
13秒前
开心向真完成签到,获得积分10
13秒前
认真丹亦完成签到 ,获得积分10
14秒前
addi111完成签到,获得积分10
15秒前
16秒前
小柯基学从零学起完成签到 ,获得积分10
16秒前
Emily完成签到,获得积分10
17秒前
易吴鱼完成签到 ,获得积分10
18秒前
RayLam完成签到,获得积分10
18秒前
斯文败类应助kaidaniel采纳,获得30
18秒前
没朴子完成签到,获得积分10
19秒前
娇娇完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645203
求助须知:如何正确求助?哪些是违规求助? 4768026
关于积分的说明 15026718
捐赠科研通 4803706
什么是DOI,文献DOI怎么找? 2568447
邀请新用户注册赠送积分活动 1525738
关于科研通互助平台的介绍 1485378