Semantic segmentation of deep learning remote sensing images based on band combination principle: Application in urban planning and land use

计算机科学 分割 人工智能 深度学习 城市规划 遥感 计算机视觉 土木工程 地质学 工程类
作者
Peiyan Jia,Chen Chen,Delong Zhang,Yulong Sang,Lei Zhang
出处
期刊:Computer Communications [Elsevier BV]
卷期号:217: 97-106 被引量:18
标识
DOI:10.1016/j.comcom.2024.01.032
摘要

This study investigates the relevance of semantic segmentation of remote sensing images in urban planning and land use. We introduce a novel deep learning model that leverages the principle of band combination in remote sensing images to enhance the efficiency and accuracy of semantic segmentation. Our research focuses not only on advancing the segmentation capabilities of remote sensing images but also on applying this technology in urban planning and land use to foster sustainable development in smart cities. By integrating the band combination principle into the convolution operation, our approach improves feature extraction, thereby enhancing the quality of semantic segmentation in remote sensing images. This method outperforms traditional remote sensing image analysis techniques by combining automatic feature learning and the generalization capabilities of deep learning, thereby improving the segmentation model's performance. A unique aspect of this study is the direct application of remote sensing image segmentation in urban planning and land use. Our model accurately identifies various land uses such as residential, commercial, and industrial areas, and tracks land-use change trends, aiding urban planners in future development planning. Compared to conventional methods, our model significantly reduces training time and increases computational efficiency under identical training conditions. Experimental comparisons and analyses reveal that, within the same training duration, our model's accuracy surpasses that of similar models by 10%–15%. On the ISPRS dataset, our model achieved a segmentation accuracy of 82.43% for building surfaces, and 76.54% for trees. In scenarios with relatively uniform reflective surfaces, our model outperforms similar models by approximately 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫电青霜完成签到,获得积分10
刚刚
kannar完成签到,获得积分10
刚刚
专注的树完成签到,获得积分10
2秒前
不扯先生发布了新的文献求助30
2秒前
2秒前
2秒前
aki空中飞跃完成签到,获得积分10
2秒前
HtObama完成签到,获得积分10
3秒前
cheng完成签到,获得积分10
3秒前
酷炫橘子完成签到,获得积分10
4秒前
5秒前
二巨头完成签到,获得积分10
6秒前
7秒前
不扯先生完成签到,获得积分10
7秒前
7秒前
十个勤天完成签到,获得积分10
7秒前
hoshi完成签到,获得积分10
8秒前
LSY完成签到,获得积分10
8秒前
务实的绝悟完成签到,获得积分10
8秒前
lily发布了新的文献求助10
8秒前
科研通AI5应助angel采纳,获得10
9秒前
害羞猫咪完成签到,获得积分10
10秒前
Jenny完成签到,获得积分10
11秒前
健壮惋清完成签到 ,获得积分10
11秒前
12秒前
四辈完成签到,获得积分10
13秒前
keyangouderic发布了新的文献求助10
13秒前
Jerry完成签到,获得积分10
13秒前
Qi完成签到 ,获得积分10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
Bethune完成签到 ,获得积分10
14秒前
墨之默完成签到,获得积分10
14秒前
lhx完成签到,获得积分20
14秒前
14秒前
孙梁子完成签到,获得积分10
15秒前
liang完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855