Nonlinear Mixture Signal Separation With the Extended Slow Feature Analysis (xSFA) in Fiber-Optic Distributed Acoustic Sensor (DAS)

独立成分分析 非线性系统 计算机科学 源分离 盲信号分离 声学 估计员 光纤 特征(语言学) 混合(物理) 固定点算法 信号(编程语言) 算法 模式识别(心理学) 人工智能 数学 电信 物理 频道(广播) 统计 语言学 哲学 量子力学 程序设计语言
作者
Huijuan Wu,Mingyang Lu,Chengyu Xu,Xiben Jiao,Haibei Liao,Xinlei Wang,Xinjian Shu,Yiyu Liu,Yu Wu,Yunjiang Rao
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (7): 2580-2594 被引量:3
标识
DOI:10.1109/jlt.2023.3336575
摘要

Fiber-optic distributed acoustic sensor (DAS) has been applied to various large-scale infrastructure monitoring areas in smart cities, leading to a new generation of fiber-optic Internet of Things for ground listening. However, its single-source detection and recognition methods may fail in unpredictable multi-source interfering environments in urban. When an unknown number of sources are nonlinearly mixed at the DAS's fiber receiver, it increases the difficulty of multiple source separation further. Therefore, in this paper, it is proposed a novel multi-source separation method in fiber-optic DAS to separate individual vibration signals from the unidentified nonlinear mixing procedure with unknown number of sources. Firstly, the mixed source number is blindly estimated by utilizing the Gerschgorin disk estimator (GDE), which is effective and robust in real-field applications of DAS. Secondly, the statistically independent sources are separated with the extended slow feature analysis (xSFA) according to the nonlinear instantaneous mixing model constructed for DAS in this paper, which considers the complexity of the vibration wave propagation to the subsurface fiber. It relies on the temporal correlation to recover structure of the source signals that has been destroyed in the nonlinear mixing procedure. Finally, evaluation indices for separation are studied and the effectiveness of both the multi-source separation and the source number estimation are verified through simulation experiments and field tests. Compared with the two benchmark methods of fast independent component analysis (FastICA) and the independent slow feature analysis (ISFA), it shows the complicated nonlinear mixture of DAS signals can be separated with higher reliability in both the artificially and the real-field mixed cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
atdawn完成签到,获得积分10
1秒前
跳跃的谷梦完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
二小发布了新的文献求助10
3秒前
Judy完成签到 ,获得积分10
4秒前
4秒前
5秒前
平淡的火龙果完成签到,获得积分10
5秒前
5秒前
零九发布了新的文献求助10
5秒前
5秒前
魈玖完成签到,获得积分10
5秒前
恐里乔太岁完成签到,获得积分10
6秒前
越旻完成签到,获得积分10
6秒前
12完成签到,获得积分10
7秒前
夏侯无色完成签到,获得积分10
8秒前
feifei发布了新的文献求助10
8秒前
petli完成签到,获得积分10
8秒前
8秒前
lupp发布了新的文献求助10
9秒前
liffchao应助忧郁平文采纳,获得10
9秒前
tochege发布了新的文献求助10
10秒前
123pc发布了新的文献求助10
10秒前
10秒前
LXY发布了新的文献求助10
11秒前
pikachu完成签到,获得积分10
12秒前
铁妹驳回了英姑应助
12秒前
大力兔子完成签到,获得积分10
12秒前
13秒前
一锅炖不下完成签到,获得积分10
14秒前
木可南完成签到,获得积分10
14秒前
可爱的函函应助幸福果汁采纳,获得10
15秒前
wanci应助二小采纳,获得10
15秒前
体贴花卷发布了新的文献求助10
16秒前
圆圆完成签到,获得积分10
17秒前
123pc完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312450
求助须知:如何正确求助?哪些是违规求助? 2945105
关于积分的说明 8522863
捐赠科研通 2620823
什么是DOI,文献DOI怎么找? 1433131
科研通“疑难数据库(出版商)”最低求助积分说明 664863
邀请新用户注册赠送积分活动 650231