Nonlinear Mixture Signal Separation With the Extended Slow Feature Analysis (xSFA) in Fiber-Optic Distributed Acoustic Sensor (DAS)

独立成分分析 非线性系统 计算机科学 源分离 盲信号分离 声学 估计员 光纤 特征(语言学) 混合(物理) 固定点算法 信号(编程语言) 算法 模式识别(心理学) 人工智能 数学 电信 物理 频道(广播) 统计 语言学 哲学 量子力学 程序设计语言
作者
Huijuan Wu,Mingyang Lu,Chengyu Xu,Xiben Jiao,Haibei Liao,Xinlei Wang,Xinjian Shu,Yiyu Liu,Yu Wu,Yunjiang Rao
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (7): 2580-2594 被引量:3
标识
DOI:10.1109/jlt.2023.3336575
摘要

Fiber-optic distributed acoustic sensor (DAS) has been applied to various large-scale infrastructure monitoring areas in smart cities, leading to a new generation of fiber-optic Internet of Things for ground listening. However, its single-source detection and recognition methods may fail in unpredictable multi-source interfering environments in urban. When an unknown number of sources are nonlinearly mixed at the DAS's fiber receiver, it increases the difficulty of multiple source separation further. Therefore, in this paper, it is proposed a novel multi-source separation method in fiber-optic DAS to separate individual vibration signals from the unidentified nonlinear mixing procedure with unknown number of sources. Firstly, the mixed source number is blindly estimated by utilizing the Gerschgorin disk estimator (GDE), which is effective and robust in real-field applications of DAS. Secondly, the statistically independent sources are separated with the extended slow feature analysis (xSFA) according to the nonlinear instantaneous mixing model constructed for DAS in this paper, which considers the complexity of the vibration wave propagation to the subsurface fiber. It relies on the temporal correlation to recover structure of the source signals that has been destroyed in the nonlinear mixing procedure. Finally, evaluation indices for separation are studied and the effectiveness of both the multi-source separation and the source number estimation are verified through simulation experiments and field tests. Compared with the two benchmark methods of fast independent component analysis (FastICA) and the independent slow feature analysis (ISFA), it shows the complicated nonlinear mixture of DAS signals can be separated with higher reliability in both the artificially and the real-field mixed cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCI发布了新的文献求助10
刚刚
刚刚
zhui发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
马静雨完成签到,获得积分20
1秒前
2秒前
2秒前
快乐小白菜应助shenzhou9采纳,获得10
2秒前
无花果应助aertom采纳,获得10
2秒前
小田发布了新的文献求助10
2秒前
sankumao发布了新的文献求助30
2秒前
奋斗的盼柳完成签到 ,获得积分10
3秒前
4秒前
Jasper应助handsomecat采纳,获得10
4秒前
4秒前
李雪完成签到,获得积分10
5秒前
5秒前
sv发布了新的文献求助10
7秒前
小田完成签到,获得积分10
7秒前
茶茶完成签到,获得积分20
7秒前
苏兴龙完成签到,获得积分10
7秒前
坚强的亦云-333完成签到,获得积分10
7秒前
Ava应助dan1029采纳,获得10
8秒前
8秒前
8秒前
奶糖最可爱完成签到,获得积分10
9秒前
9秒前
mojomars发布了新的文献求助10
10秒前
幽壑之潜蛟应助茶茶采纳,获得10
10秒前
11秒前
11秒前
11秒前
迅速海云完成签到,获得积分10
11秒前
sjxx发布了新的文献求助10
11秒前
11秒前
乐乐应助Rachel采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794