独立成分分析
非线性系统
计算机科学
源分离
盲信号分离
声学
估计员
光纤
特征(语言学)
混合(物理)
固定点算法
信号(编程语言)
算法
模式识别(心理学)
人工智能
数学
电信
物理
频道(广播)
统计
语言学
哲学
量子力学
程序设计语言
作者
Huijuan Wu,Mingyang Lu,Chengyu Xu,Xiben Jiao,Haibei Liao,Xinlei Wang,Xinjian Shu,Yiyu Liu,Yu Wu,Yunjiang Rao
标识
DOI:10.1109/jlt.2023.3336575
摘要
Fiber-optic distributed acoustic sensor (DAS) has been applied to various large-scale infrastructure monitoring areas in smart cities, leading to a new generation of fiber-optic Internet of Things for ground listening. However, its single-source detection and recognition methods may fail in unpredictable multi-source interfering environments in urban. When an unknown number of sources are nonlinearly mixed at the DAS's fiber receiver, it increases the difficulty of multiple source separation further. Therefore, in this paper, it is proposed a novel multi-source separation method in fiber-optic DAS to separate individual vibration signals from the unidentified nonlinear mixing procedure with unknown number of sources. Firstly, the mixed source number is blindly estimated by utilizing the Gerschgorin disk estimator (GDE), which is effective and robust in real-field applications of DAS. Secondly, the statistically independent sources are separated with the extended slow feature analysis (xSFA) according to the nonlinear instantaneous mixing model constructed for DAS in this paper, which considers the complexity of the vibration wave propagation to the subsurface fiber. It relies on the temporal correlation to recover structure of the source signals that has been destroyed in the nonlinear mixing procedure. Finally, evaluation indices for separation are studied and the effectiveness of both the multi-source separation and the source number estimation are verified through simulation experiments and field tests. Compared with the two benchmark methods of fast independent component analysis (FastICA) and the independent slow feature analysis (ISFA), it shows the complicated nonlinear mixture of DAS signals can be separated with higher reliability in both the artificially and the real-field mixed cases.
科研通智能强力驱动
Strongly Powered by AbleSci AI