Nonlinear Mixture Signal Separation With the Extended Slow Feature Analysis (xSFA) in Fiber-Optic Distributed Acoustic Sensor (DAS)

独立成分分析 非线性系统 计算机科学 源分离 盲信号分离 声学 估计员 光纤 特征(语言学) 混合(物理) 固定点算法 信号(编程语言) 算法 模式识别(心理学) 人工智能 数学 电信 物理 频道(广播) 统计 哲学 量子力学 程序设计语言 语言学
作者
Huijuan Wu,Mingyang Lu,Chengyu Xu,Xiben Jiao,Haibei Liao,Xinlei Wang,Xinjian Shu,Yiyu Liu,Yu Wu,Yunjiang Rao
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (7): 2580-2594 被引量:3
标识
DOI:10.1109/jlt.2023.3336575
摘要

Fiber-optic distributed acoustic sensor (DAS) has been applied to various large-scale infrastructure monitoring areas in smart cities, leading to a new generation of fiber-optic Internet of Things for ground listening. However, its single-source detection and recognition methods may fail in unpredictable multi-source interfering environments in urban. When an unknown number of sources are nonlinearly mixed at the DAS's fiber receiver, it increases the difficulty of multiple source separation further. Therefore, in this paper, it is proposed a novel multi-source separation method in fiber-optic DAS to separate individual vibration signals from the unidentified nonlinear mixing procedure with unknown number of sources. Firstly, the mixed source number is blindly estimated by utilizing the Gerschgorin disk estimator (GDE), which is effective and robust in real-field applications of DAS. Secondly, the statistically independent sources are separated with the extended slow feature analysis (xSFA) according to the nonlinear instantaneous mixing model constructed for DAS in this paper, which considers the complexity of the vibration wave propagation to the subsurface fiber. It relies on the temporal correlation to recover structure of the source signals that has been destroyed in the nonlinear mixing procedure. Finally, evaluation indices for separation are studied and the effectiveness of both the multi-source separation and the source number estimation are verified through simulation experiments and field tests. Compared with the two benchmark methods of fast independent component analysis (FastICA) and the independent slow feature analysis (ISFA), it shows the complicated nonlinear mixture of DAS signals can be separated with higher reliability in both the artificially and the real-field mixed cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倚栏听风发布了新的文献求助10
刚刚
黑暗之神完成签到,获得积分10
刚刚
刚刚
季文婷发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
Qz发布了新的文献求助10
2秒前
沅芷0871完成签到,获得积分10
2秒前
粉面菜蛋完成签到,获得积分10
2秒前
2秒前
ahsisalah完成签到,获得积分10
2秒前
lyy发布了新的文献求助10
2秒前
bearbiscuit完成签到,获得积分10
3秒前
anastasia完成签到,获得积分10
3秒前
3秒前
Shawn完成签到,获得积分10
3秒前
4秒前
4秒前
KKKK发布了新的文献求助10
4秒前
qwert完成签到,获得积分10
4秒前
普鲁卡因发布了新的文献求助10
4秒前
Iris发布了新的文献求助10
4秒前
黑暗之神发布了新的文献求助10
4秒前
隐形的映波完成签到,获得积分10
4秒前
4秒前
呱呱发布了新的文献求助20
4秒前
4秒前
fwb发布了新的文献求助10
5秒前
散白完成签到,获得积分20
5秒前
Stella应助怡然的乐巧采纳,获得10
5秒前
所所应助tuo zhang采纳,获得10
5秒前
5秒前
平淡的火龙果完成签到,获得积分10
5秒前
dandelion完成签到,获得积分10
6秒前
笑点低的靳完成签到,获得积分10
6秒前
copyaa完成签到,获得积分10
6秒前
呵tui完成签到,获得积分20
6秒前
7秒前
JIAca发布了新的文献求助10
7秒前
yangyangyang完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017