纳米纤维素
韧性
材料科学
极限抗拉强度
纤维素
复合材料
生物相容性
化学工程
工程类
冶金
作者
Kaixuan Zhao,Ruonan Li,Wenhui Qi,Xiaojing Tian,Zhisheng Zhang,Yang Wang,Yafei Zhang,Hongjie Zhang,Wenhang Wang
标识
DOI:10.1016/j.carbpol.2023.121708
摘要
Nanocellulose films possess numerous merits ascribing to their inherent biocompatibility, non-toxic and biodegradability properties. The potential for practical applications would be improved if their mechanical strength and toughness requirements could be met simultaneously. Herein, dual cross-linked nanocellulose (DC) film was fabricated by the treatments of chemical and physical cross-linking, which was mechanically superior to pure nanocellulose (CNF) films. To further increase the toughness of DC films, spherical cellulose (Sph) was incorporated into DC film (DC-Sph film), and analyzed under different humidity conditions (RH) (from 10 % to 90 %). The changes of functional groups of CNF, DC and DC-Sph films were detected by FTIR and XPS spectrum. The epichlorohydrin and Sph content were optimized, followed by the investigation of RH on the toughness of films. The highest tensile strength (146.6 ± 4.6 MPa) was obtained in DC film at 50 % RH, while the DC-Sph film showed the largest toughness (40.3 ± 3.7 kJ/m2) at 70 % RH. Furthermore, the possible toughening mechanism of DC-Sph film was also discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI