肝病学
计算机科学
集合(抽象数据类型)
情报检索
医学
内科学
程序设计语言
作者
Jin Ge,Steven Sun,J. F. Owens,Victor Galvez,Oksana Gologorskaya,Jennifer C. Lai,Mark J. Pletcher,Kuo-Hsin Lai
标识
DOI:10.1097/hep.0000000000000834
摘要
Large language models (LLMs) have significant capabilities in clinical information processing tasks. Commercially available LLMs, however, are not optimized for clinical uses and are prone to generating hallucinatory information. Retrieval-augmented generation (RAG) is an enterprise architecture that allows the embedding of customized data into LLMs. This approach "specializes" the LLMs and is thought to reduce hallucinations.
科研通智能强力驱动
Strongly Powered by AbleSci AI