Fracture behavior and mechanism of highly fragmented steel cylindrical shell under explosive loading

材料科学 脆性 爆炸物 复合材料 极限抗拉强度 合金 碳化物 碎片(计算) 断裂(地质) 壳体(结构) 冶金 化学 有机化学 计算机科学 操作系统
作者
Kang Wang,Peng Chen,Xingyun Sun,Yufeng Liu,Jiayu Meng,Xiaoyuan Li,Xiongwei Zheng,Chuan Xiao
出处
期刊:Defence Technology [Elsevier]
被引量:4
标识
DOI:10.1016/j.dt.2024.02.004
摘要

An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of the fragments formed. This study investigated the fragmentation performance of a new high-carbon silicon-manganese (HCSiMn) steel cylindrical shell through fragment recovery experiments. Compared with the conventional 45Cr steel shell, the number of small mass fragments produced by the HCSiMn steel shell was significantly increased with a scale parameter of 0.57 g fitted by the Weibull distribution model. The fragmentation process of the HCSiMn shell exhibited more brittle tensile fracture characteristics, with the microcrack damage zone on the outer surface being the direct cause of its high fragmentation. On the one hand, the doping of alloy elements resulted in grain refinement by forming metallographic structure of tempered sorbite, so that microscopic intergranular fracture reduces the characteristic mass of the fragments; on the other hand, the distribution of alloy carbides can exert a "pinning" effect on the substrate grains, causing more initial cracks to form and propagate along the brittle carbides, further improving the shell fragmentation. Although the killing power radius for light armored vehicles was slightly reduced by about 6%, the dense killing radius of HCSiMn steel projectile against personnel can be significantly increased by about 26% based on theoretical assessment. These results provided an experimental basis for high fragmentation warhead design, and to some extent, revealed the correlation mechanism between metallographic structure and shell fragmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kma完成签到,获得积分10
刚刚
JPEI完成签到,获得积分10
1秒前
JJ完成签到,获得积分10
1秒前
Orange应助钰琳采纳,获得10
1秒前
Alerina完成签到,获得积分10
2秒前
情怀应助龙舌兰采纳,获得10
2秒前
2秒前
优秀的大璇完成签到 ,获得积分10
2秒前
3秒前
兰兰不懒发布了新的文献求助10
3秒前
美丽蕨菜子完成签到,获得积分10
3秒前
3秒前
称心映梦完成签到 ,获得积分10
3秒前
Layqiwook完成签到,获得积分10
4秒前
glzhou1975完成签到 ,获得积分10
4秒前
那就来吧完成签到,获得积分20
4秒前
躲进小楼完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
打打应助绚丽多彩的灰采纳,获得10
5秒前
干八两螺蛳粉完成签到,获得积分10
5秒前
宝贝朵朵完成签到,获得积分10
6秒前
tty完成签到 ,获得积分10
6秒前
杭雨雪发布了新的文献求助10
7秒前
7秒前
yuki完成签到,获得积分10
7秒前
7秒前
Neltharion完成签到,获得积分0
7秒前
8秒前
ggbond完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
李健的粉丝团团长应助fmy采纳,获得10
9秒前
9秒前
ccm应助hhy采纳,获得10
9秒前
9秒前
头罩怪人完成签到,获得积分10
10秒前
10秒前
在水一方应助minel采纳,获得10
10秒前
10秒前
10秒前
123完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665553
求助须知:如何正确求助?哪些是违规求助? 4877312
关于积分的说明 15114485
捐赠科研通 4824825
什么是DOI,文献DOI怎么找? 2582883
邀请新用户注册赠送积分活动 1536919
关于科研通互助平台的介绍 1495370